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Clinical Trials:
*Complex, multiple objectives
emaximizing power to detect clinically relevant

differences

*maximizing the individual patient's experience in the
trial

*minimizing total monetary cost of trial
setc.

Binary response
pa : Pr(success|A), qA =1—-pa4
pp : Pr(success|B), qg =1 — pp
n4 : number of patients on A

np : number of patients on B, n = ny4 + np



Consider the variance of the difference of two
proportions p4 — Pp :

DAGA X pBCJB.

n4 ng

If we want to find the ratio R =na/ng to
minimize this variance (i.e., maximize power),

we simply rewrite the expression as

(R+1)paga (R+1)ppgB
+ :
Rn n

take the derivative with respect to R and equate
to zero.



Neyman allocation: Maximizes the power of the test of
simple difference py — pB.

R(pa,pp) =na/np = \/paqa/\/PBYB-

Can also be interpreted in this way: For fixed variance of
the test, minimize the total sample size.

Problems:
«Cannot be implemented; don't know what py4, pp are.

*When pys + pp > 1, Neyman allocation assigns more
patients to the inferior treatment. °



Alternative optimality criterion: For fixed power of the t-
test, find the optimality criterion to minimize the
expected number of treatment failures.

So our optimization criterion:

minimize the expected number of failures, given by

R 1

nada +Npgp = ﬂ—l—nqA + Er1

ngas

subject to

avar{p, — Pp} = K for constant K.



This leads to the allocation ratio

R(pa,pB) = na/np = /pa/+/DB.

Rosenberger, Stallard, Ivanova, Harper, and Ricks, 2001
(RSIHR allocation)

This allocation deals with power consideration, but also the
patient's experience in the trial.

But we still don't know the unknown parameters.



Gene therapy is the new frontier for clinical research.

Very small clinical trials have been conducted in a number
of areas of gene therapy:

- X-linked severe combined immunodeficiency
--  ADA deficiency

-~ Mucopolysaccharidosis

--  Familial hypercholesterolemia

--  Cystic fibrosis

--  Hemophilia

-~ Chronic granulomatous disease

However, few placebo-controlled randomized clinical trials
have been performed.

Example: Transfer of cystic fibrosis transmembrane
conductance regulator (CFTR) gene to the nasal
epithelium.

Placebo-controlled trial: 8 patients on therapy; 8 on
placebo

Primary outcome: Correction of chloride abnormahty after
1 week.

Results: Active therapy was 83.3% successful, placebo
was 28.6% successful (p < 0.05).



In the cystic fibrosis trial, ps = 0.833, pp = 0.286, so
Neyman allocation 1s

R = 0.825 or 45% to active, 55% to placebo.

Clearly this is unethical. Neyman allocation may
maximize power, but is unethical 1f

ps + pg > 1.

RSIHR allocation would be 63:37 in favor of
treatment. For the 16 patients, we would have 10:6
allocation, and 4 more patients would be assigned to
the experimental therapy, with minimal loss in power.



Why do equal allocation anyway?

Friedman, Furberg, and DeMets (1981, p. 41): (1)
Equipoise dictates an uncertainty about the treatments
at the beginning of the trial that should be mirrored in
a 50:50 allocation ratio; (2) maximizes power.

Under the null hypothesis, both Neyman and RSIHR
allocation would yield 50:50 allocation at the
beginning of the trial.

But we could update an estimate of p4 and pp at certain

points in the trial, and adapt the allocation
accordingly.
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Melfi, Page, and Geraldes (2001): Sequential maximum
likelihood estimation (SMLE):

After j — 1 patients have responded, compute Dy (j — 1),

Dp(j—1), and R = R(Ba(j—1),5(j — 1))- Then
randomly assign treatment A to patient j with
probability o = R/(1 + R).

Then we would expect that the random proportion of
patients assigned to A, N4(n)/n would converge to p
(true under certain conditions).

Example: after 10 patients, we have P4 = 0.4 and and Dg
= 0.6. Then the 11th patient would be assigned to A

with probability /0.4/(1/0.4 + 1/0.6) = 0.45
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Urn Models have been used because in adaptive designs,
but these are not based on any optimality criteria.

Wei/Durham procedure:
Two treatments, A and B
Begin with a4 and ap balls of types A and B in an urn
Draw A: assign patient to A
replace ball
add 1 type A ball if treatment A 1s successful
add 1 type B ball if treatment A is failure
Draw B: assign patient to B
replace ball
add 1 type B ball if treatment B is successful
add 1 type A ball if treatment B is failure
Some nice properties:

«Asymptotically, allocation ratios tend to

N4/Ng — gp/qa (relativerisk)



Ivanova's procedure (Ivanova, 2002):
Urn contains balls of type A, type B, and type 0.

Type A or B drawn: assign that treatment.
Success: ball is replaced, urn unchanged.
Failure: ball is not replaced.

Type 0 ball drawn: no subject 1s treated.
ball is replaced along with one
of type A and one of type B.

Same limiting allocation as RPW, but reduced variability.

Example: Suppose we start the trial with 1 ball of each
type in the urn. The first patient is ready to be
randomized and a type A ball is drawn (with
probability 1/3). The patient is a success, and the ball
is replaced. The probability of assignment to A is still
1/3. Suppose for patient 2, a type O ball is drawn.
That ball is returned to the urn along with an
additional type A and type B ball. Another ball 1s
drawn. This time the probability that patient 2 will be
assigned to A is 2/5 and to B is 2/5. Suppose a type A
ball is drawn and we have a treatment failure. The
ball is not returned to the urn so the probability that
patient 3 will be assigned to A 1s now 1/4 and to B 18
1/2.
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Eisele's procedure, Eisele (1994).

p(p/z)?!
plp/z) + (1 —p)(L—p)/(1 —x))

(Hu and Zhang, 2002).

Let g(z, p) =

Allocate  to  treatment A  with  probability
9(Na(i = 1)/(G = 1), D).

Note that when v = 0, we have the SMLE procedure. So
this can be considered a generalization of that
procedure. We found v = 2 to have particularly good
properties. ’

Again, under certain conditions, N 4(n)/n—p.

Example: Suppose we have assigned 9 patients, 5 to A and
4 to B. We have observed a success rate of p, = 3/5
and and Py = 1/4. If we are interested in RSIHR
allocation, we can compute ~
0 =1/3/5/(1/3/5++/1/4) = 0.6077.

Then the probability of assigning the 10th patient to A
(v = 2) is computed as -

_ 0.6077(9x0.6077/5)? _
BA) = 0.6077(9x0.6077/5)2+0.3923(9x0.3923/4)2 0.704.
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Response-adaptive randomization procedures have some
advantages:

1. They are fully randomized, and protect against biases
(Rosenberger and Lachin, 2002)

2. They reflect the magnitude of the treatment effect thus
far.

3. They can be used as a recruitment tool.

Some have argued that one must make assignments with
probability 1 to either A or B if one treatment is
performing better. This was the principal component

of much adaptive designs research through the 60's
and 70's.

15



We wish to compare expected treatment failures for these
four procedures, and power of the test. Heretofore,
we could only do this by simulation.

Hu and Rosenberger (2003, JASA)
Power depends on
1. the allocation target.

Procedures that target RSIHR or Neyman will be more
powerful than urn procedures.

2.  the variability of the procedure.

The most variable procedure is Wei/Durham's procedure.
We have shown that Ivanova's procedure has the
lowest variability that can possibly be achieved by
any randomized response-adaptive procedure. (Can
also be attained by deterministic procedures, such as
Eisele's procedure as y—oo or Zelen's play-the-winner
rule).

3. how fast the procedure converges to the target
allocation.

Ivanova's is slowest to converge. FEisele's is fastest to
converge.
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So which procedure is better? Guiding principle: the
procedure must be fully randomized.



CONCLUSIONS:

Eisele's procedure is always better than plain old
complete randomization!
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Table 1: Simulated power and ezpected treatment failures (S.D.) for complete random-

ization and three response-adaptive randomization procedures. 10,000 replications.

Complete Wei/Durham Ivanova Eisele
Pa  PB n Power Failures Power Failures Power Failures Power Failures
09 01 17 91 9(2.1) 86 6(2.1) 89 ( 6) 91 8 (2.
0.9 0.3 38 90 15 ) 85 1(23) 89 3 (2.

83 11(
83 21 ( 83 20 (3.
85 67 (9) 83 63 (7
0.9 08 1600 91 240 (14) 88 221 (17) 86 215(14

)
)
) ) 9 26 (3.
) )
) )
0.7 03 78 90 39 (44) 8  35(48) 87 33 (47
) )
) )
) )
) )

1)
3)
5)
90 78 (7)
91 237(14)
90  35(3.9)
)
)
)
)

(
(
0.9 0.5 96 90 29 ( 6)
0 )
)
)
10) 90 144 (9
)
)
)

09 0.7 400 91 80 (8

0.7 05 368 90 147 (9 89 139 ( 89 139
0.5 0.4 1200 89 660 (17 89 655 (18 89 655
0.3 0.1 150 90 120 (5 90 118 (5 90 118
0.2 0.1 480 91 408 ( 91 407 ( 91 407

89 657 (17
o1 115 (5
91 404 (
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