Spontaneous AE Reports

PERSPECTIVES ON AUTOMATED METHODS FOR PHARMACOVIGILANCE SIGNAL DETECTION

A. Lawrence Gould, PhD Peter K Honig, MD, MPH Merck Research Laboratories FDA/Industry Statistics Workshop Bethesda MD, September 19, 2003 · Safety information from clinical trials is incomplete

- ° Few patients -- rare events likely to be missed
- ° Not necessarily 'real world'
- Need info from post-marketing surveillance & spontaneous reports
- Pharmacovigilance by reg. agencies & mfrs carried out by skilled clinicians & medical epidemiologists
- Long history of research on issue
 - ° Finney (MIMed1974, SM1982) Royall (Bcs1971)

1

 Inman (BMedBull1970) and many more

September19,2003

Napke (CanPhJ1970)

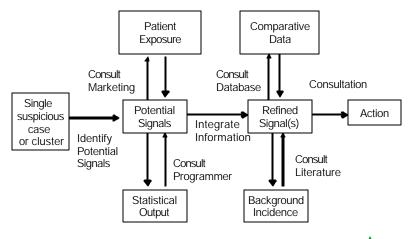
Public

Issues

- · Incomplete reports of events, not necessarily reactions
- · How to compute effect magnitude
- · Many events reported, many drugs reported
- · Bias & noise in system
- Difficult to estimate <u>incidence</u> because no. of pats at risk, pat-yrs of exposure seldom reliable
- Appropriate use of computerized methods, e.g., supplementing standard pharmacovigilance to identify possible signals sooner -- early warning signal

2

No Gold Standard for comparison



3

Public

Signal Generation: The Manual Method

Proportional Reporting Rate

Usual basis for quantification

Drug	Target AE	All Other	Total
Target Drug	а	b	a + b
All Other	С	d	c + d
Total	a + c	b + d	Ν

 $PRR = a / (a + b) \div (a + c) / N$

AE report
$$\perp$$
 drug report \Rightarrow E(a) = (a + b)(a + c) / N

PRR = a / E(a)

Quite variable if E(a) is small

How to reduce imprecision & make interpretable?

4

September19,2003

Public

WHO (Bate et al, EurJCIPhrm1998)

• 'Bayesian Confidence Neural Network' (BCNN)

Model:

- n_{ij} = no. reports mentioning both drug i & event j
- n_i = no. reports mentioning drug i
- n_i = no. reports mentioning event j

Usual Bayesian inferential setup:

- Binomial likelihoods for n_{ii}, n_i, n_i
- Beta priors for the rate parameters $(\mathbf{f}_{ij}, \mathbf{p}_i, \mathbf{q}_j)$

6

- Two current approaches: DuMouchel & WHO
- Both use ratio n_{ij} / E_{ij} where

 n_{ij} = no. of reports mentioning both drug i & event j E_{ij} = expected no. of reports of drug i & event j

Both report features of posterior dist'n of 'information criterion'

$$IC_{ij} = Iog_2 n_{ij} / E_{ij} = PRR_{ij}$$

- E_{ij} usually computed assuming drug i & event j are mentioned independently
- Ratio > 1 (IC > 0) ⇒ combination mentioned more often than expected if independent

WHO, cont'd

- Uses 'delta method' to approximate variance of $Q_{ij} = \mbox{ In } r_{ij} \ / \ p_i q_j = \mbox{ In } 2 \ \times \ \mbox{ IC}_{ij}$
- However, can calculate exact mean and variance of Q_{ij}
- WHO measure of importance = E(ICij) 2 SD(ICij)
- Test of signal detection predictive value by analysis of signals 1993-2000: Drug Safety 2000; 23:533-542
- "Gold standard": appearance in reference texts (Matindale, PDR, etc.)
- 84% Negative Pred Val, 44% Positive Pred Val
- · Good filtering strategy for clinical assessment

Public

September19,2003

7

DuMouchel (AmStat1999)

- · E_{ii} known, computed using stratification of database - $n_i^{(k)}$ = no. reports of drug i in stratum k $n_i^{(k)}$ = no. reports of event j in stratum k $N^{(k)}$ = total reports in stratum k $E_{_{ii}}$ = $\Sigma_{_{k}}\,n_{_{i}}{}^{(k)}n_{_{i}}{}^{(k)}$ / $N^{(k)}$ (E (n_{_{ij}}) under independence)
- $n_{ii} \sim Poisson(\mu_{ii})$ -- interested in $\lambda_{ii} = \mu_{ii}/E_{ii}$
- Prior dist'n for λ = mixture of gamma dist'ns:

$$f(\lambda; a_1, b_1, a_2, b_2, \pi) = \pi g(\lambda; a_1, b_1) + (1 - \pi) g(\lambda; a_2, b_2)$$

8

 $g(\lambda; a, b) = b (b\lambda)^{a - 1} e^{-b\lambda} / \Gamma(a)$ where

From DuMouchel (Table 3)

٠

DuMouchel, cont'd

- Estimateπ, a₁, b₁, a₂, b₂ using Empirical Bayes -marginal dist'n of n_{ij} is mixture of negative binomials
- $\ln_2 \lambda_{ii} = IC_{ii}$ •
- Easy to get 5% lower bound or E(IC_{ii}) 2 SD(IC_{ii}) (like WHO)

		Public	September 19,2003		9			Public														
			Entry Value > 64	Sno																		
nple			> 64	NLY S & SERI	PECT	IOUS SERIOUS		T OUS			s		_	SUC			S		ECT	erious		PECT
N = 4,864,	,480, n _i	= 85,304	Graphical	0 / SON IE	orrhage / ALL orrhage / ONLY SUSPECT	norrhage / ONLY SERIOUS		farction / ONLY SUSPECT farction / ONLY S & SERIC		USPECT	llure / ONLY SERIOUS llure / ONLY S & SERIOUS		s / ONLY SUSPECT	necrosis / UNLY SEKIOUS necrosis / ONLY S & SERIOUS		JISPECT	s NOS / ONLY SERIOUS s NOS / ONLY S & SERIOL	_	tatic / ONLY SUSPEC	Mestatic / UNLY SERIUUS Mestatic / ONLY S & SERIOUS	ALL.	iic NOS / ONLY SUSPECT
			display of	abnormi	orrhage / ALL	hage / C	ction / ALL	arction / ONLY SUS arction / ONLY S &	VLL	/ ONLY SUSPECT	S VILY S	osis / ALL	/ ONLY	/ ONLY	NLL	NOS / ONLY SUSPECT	tis NOS / ONLY SERIOUS tis NOS / ONLY S & SERIC	slestatic / ALL	atic / ON	atic / ON	onic NOS / ALL	NOS / C
е	Poly	nouritie	potential	unction	taemorr taemorr	laemorr	Infarction	nfarction	ailure / ALL	aiture / (ailure / (ailure / (tecrosis	tecrosis	tecrosis tecrosis	NOS / ALL	NOS / 0	NOS/O	cholest	Seles	55	chronic	chronic
	-	Polyneuritis	associations	Hepatic f	fepatic / fepatic /	Hepatic P	Hepatic i	Hepatic i Hepatic i	lepatic f	fepatic f	Hepatic f Hepatic f	fepatic r	fepatic r	fepatic r fepatic r	lepatitis	lepatitis	Hepatitis Hepatitis	fepatitis ch	lepatitis ch	Hepautis Hepatitis	Hepatitis	lepatitis
E _{ij}	n _j	n _{ij} E _{ij}	ETHRAM	IE T	<u> </u>				7	5 7		20	16 18	14	35	34	11	Ĥ	<u> </u>		Ť	1
1,309	262	3 1.06	EULEX						50	49 49	48	26	25 22	21								
(0.30)		2.83 (1.25)	EXTRA STRENGTH TYLENC FARESTC	1.14	-				158	156 15	6 154	79	79 78	78	55	55	54					-
			FLOXACILLIN SODIU																			
louchel	WHO	DuMouchel	FLUOTHAN						27	26 27	26	83	83 69	69	157	156 68	8 67					
).301	-0.39	0.508	FORAN FRAGM					-	+		+	17	16 16	15		33	22		_	+	+	-
			FUCIDINE CA	3	3		+	-	+		+			-	-		+	+	_	+		-
00129	0.599	0.676	FUE																			
.036	0.774	0.822	FULVICIN-U																			
.23	-1.94	-1.14	GLUCOBA		_				+		_									_	$\left \right $	_
			HALOTHAN IDAMYC		+		+	-	+	\vdash	+	35	28 24	20	65	52	14	+	-	+	+	-
3 [1.18]		-0.79 [0.58]	ILOSON												92	91						-
225	0	0		IH 28						10	10				34	27	22					1
-	-	Public	INOCC September19,2003						11			6	6	6						A	Public	

Exan

			-		
a ₁ = 0.204					
b ₁ = 0.058	Hea	dache	Pol	yneuritis	
a ₂ =1.415	n _j	n _{ij} E _{ij}	n _j	n _{ij} E _{ij}	
b ₂ = 1.838	71,209 1	,614 1,30	9 262	3 1.06	
$\pi = 0.097$	RR	1.23 (0.30))	2.83 (1.25	5)
	WHO	DuMouch	el WHO	DuMouch	ie
E(IC _{ii})	0.37	0.301	-0.39	0.508	
V(IC _{ii})	0.0013	4 0.00129	9 0.599	0.676	
SD(IĊ _{ii})	0.037	0.036	0.774	0.822	
E - 2 SD	0.3	0.23	-1.94	-1.14	
5% Quanti	le	0.233 [1.7	18]	-0.79 [0.5	58
Excessn	300	225	0	0	
September19,2003		10		A :	blic fitcle

10

Why Stratify (1)

 Report frequencies by stratum; target drug & target AE reported independently in each stratum

	S	tratum A	4	Stratum B				
	Target	All		Target	All			
	AE	Others	Total	AE	Others	Total		
Target	80	320	400	810	90	900		
Drug All Others	120	480	600	90	10	100		
Total	200	800	1000	900	100	1000		

12

September19,2003

Result From 6 Years of Reports

Events w/EBGM₀₅ > 2 (Bold \Rightarrow N \ge 100)

				5% Lwr	Excess
N	E	AE (preferred term)	EBGM	Bnd	Ν
6	0.55	toxicerythema	8.19	2.73	0.9
8	0.82	obstipation	7.97	3.30	1.9
9	1.15	labilehypertension	6.15	2.79	2.1
51	8.39	erythrocytesdecreased	5.85	4.53	29.6
53	9.37	peripheral vascular disorder	5.41	4.21	30.1
50	11.5	anginapectoris	4.08	3.18	25.0
124	30.9	hyperkalemia	3.91	3.36	72.7
225	60.5	palpitation	3.66	3.28	137.7
696	195.9	cough	3.54	3.32	454.5
904	290.6	dizziness	3.10	2.93	562.0
99	31.0	serumcreatinineincreased	3.09	2.61	49.9
214	81.6	angioedema	2.59	2.31	107.0
102	38.6	renalfailure	2.57	2.18	45.5
216	91.9	edema	2.32	2.08	98.8
September 19	9,2003	14			Public

Why Stratify (2)

• Expected total Drug/AE reports under independence is sum of expected frequencies per stratum:

400 x 200/1000 + 900 x 900/1000 = 890

- Same as obs'd no. of events, so PRR = 1
- · Ignoring stratification gives expected total reports as

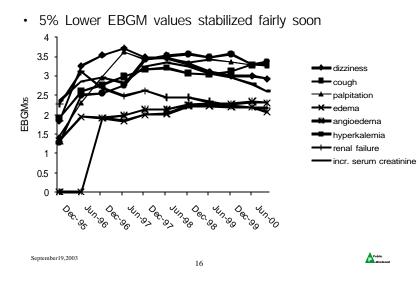
 $(400 + 900) \times (200 + 900)/2000 = 715$

 \Rightarrow PRR = 890/715 = 1.24 Spurious association!

 Could be real associations ⇒ separate evaluations per stratum may be useful & insightful

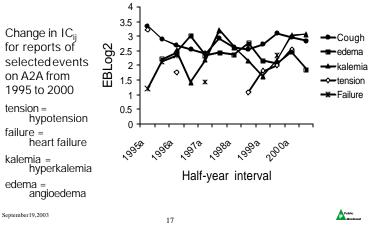
ptember 19	,2003
------------	-------

Se


13

Public

Persistence (& Reliability) of Early Signals


	As of Dec 1996		As	2000		
Adverse Event	N	Mean EBGM	Lower 5%	N	Mean EBGM	Lower 5%
renal artery stenosis	. 6	6.96	Bnd 2.41	7	4.78	<u>Bnd</u> 2.03
exanthema	23	4.74	3.23	48	2.73	2.14
peripheral vascular disorder	23	4.74	3.23	53	5.41	4.23
angina pectoris	15	4.36	2.68	50	4.08	3.18
serum creatinine increased	36	3.94	2.95	99	3.09	2.60
dizziness	349	3.86	3.53	904	3.1	2.93
myocardial infarction	26	3.67	2.62			
palpitation	73	3.59	2.95	225	3.66	3.27
hyperkalemia	32	3.46	2.55	124	3.91	3.36
renalfailure	53	3.39	2.69	102	2.57	2.17
pulmonary edema	10	3.16	1.82			
cough	209	3.11	2.77	696	3.54	3.32
migraine	19	2.87	1.95			
vertigo	22	2.51	1.75	84	2.36	1.97
angioedema	62	2.35	1.91	214	2.59	2.31
edema	72	2.32	1.91	216	2.32	2.07
headache	255	2.21	2.00			
September19,2003	15					Public

Accumulating Information over Time

Time-Sliced Evolution of Risk Ratios

• Value may lie in seeing how values of criteria change over time within time intervals of fixed length

Cloaking of AE-Drug Relationships (1)

- Company databases smaller than regulatory db, more loaded with 'similar' drugs
- eg, Drug A is 2nd generation version of Drug B, similar mechanism of action, many reports with B
- · Effect of B could mask effect of A
- May be useful to provide results when reports mentioning Drug B are omitted

Cloaking of AE-Drug Relationships (2)

	Drug A	Drug B	Others	Total
Event	n _{AE}	n _{BE}	n _{OE}	n _E
Total	n _A	n _B	n _o	Ν

- $PRR_{incB} = n_{AE} \times N / n_{A} \times n_{E}$
- $PRR_{exc B} = n_{AE} x (N n_B) / n_A x (n_E n_{BE})$
- Ratio of these measures effect of Drug B experience on risk of event using Drug A
- $PRR_{exc B}/PRR_{inc B} = 1 + \frac{n_B}{n_E n_{BE}} \left(\frac{n_{BE}}{n_B} \frac{n_E}{N} \right)$
- · Elevated risk on B decreases apparent risk on A

September19,2003

Cloaking of AE-Drug Relationships (3)

Drug E	B Included		Omit	ted
Preferred Term	EBGM05	Excess	EBGM05	Excess
atopic dermatitis	1.96	9.8	2.11	10.9
hypotension	1.87	29.5	2.44	38.2
left cardiac failure	1.99	3.0	2.20	3.7
lichen planus	1.79	4.1	2.04	5.1
pharyngeal edema	1.47	5.8	2.32	10.8
psoriasis vulgaris	1.92	8.4	2.37	10.4
pulmonary congestion	1.65	3.8	2.23	5.4
pulmonary edema			2.12	6.1
renalinsufficiency			2.10	12.2
sudden death	1.96	3.0	2.58	4.0
tachycardia	1.86	40.9	2.21	49.0
tongue edema			2.73	10.7
vertigo	1.97	33.4	2.51	41.7
September19,2003	20			Public

Effect of Combinations of Drugs or Vaccines

- GPS gives effect of individual drugs ignoring what else patient was taking
- But combinations of drugs may increase risk more than just effects of individual drugs
- FDA recognizes problem; multi-item version of GPS will be available soon (can purchase now)

Discussion

- Bayesian approaches useful for detecting possible emerging signals, espcially with few events, especially with precision is considered
- MCA (UK) currently uses PRR for monitoring emergence of drug-event associations
- Signal detection = a combination of numerical data screening and clinical judgement

Discussion

21

- · Most apparent associations represent known problems
- Some reflect disease or patient population
- ~ 25% may represent signals about previously unknown associations
- Statistical involvement in implementation & interpretation is important
- The actual false positive rate is unknown as are the legal and resource implications

September19 2003

23

Public

Future Work

· Apply methods to larger databases

Small databases \rightarrow risk of swamping signal (eg, lots of ACE info masks potential A2A associations)

- · Develop effective ways to use methods -- eg, time slicing
- Big problems remain -- need effective dictionaries: many synonyms → difficult signal detection
 - ° Event names: MedDRA may help
 - Drug names: Essential to have a commonly accepted dictionary of drug names to minimize dilution effect of synonyms

24

Public

Summary and Conclusions

- · Automated signal detection tools have promise
 - ° spontaneous reports
 - ° clinical trials

September19 2003

- ° multiple event terms: syndrome recognition
- multiple drug terms: drug interaction identification
- Still need clinical/epidemiological interpretation -how to integrate methods into detection process effectively

25

Public