On Superiority of Adaptive Sequential Designs

Qing Liu

J&JPRD

FDA/Industry Statistics Workshop

September 18-19, 2003

Prelude

Statistical Inference

- a game with two players
 - one player is nature
 - the other player is the statistician
- unknown true state of nature
- experiments
- random chance

Two Strategies

- static designs
 - correct assumption or loss of power
- adaptive designs
 - best assumption with the flexibility to modify

Intuition

Adaptive designs are superior

Motivation

Group Sequential Designs

- Armitage, McPherson and Rowe (1969)
- large body of literature

Unavoidable Difficulty

low conditional power

Sample Size Adjustment

the observed effect

Lack of Efficiency

- Tsiatis and Mehta (2002)
- Jennison and Turnbull (2003)

Better Efficiency and Effectiveness

• a minimum effect size (Liu and Chi, 2001)

Two-Stage Designs

Hypothesis

 H_0 : $\delta \leq$ 0 in favor of H_1 : $\delta >$ 0 with a minimum effect size δ_{\min}

Procedure

Assume observations from two distinct stages are independent, for which p_1 and p_2 are the 1st and 2nd stage p-values against H_0

• specify $\alpha_1 < \alpha < \alpha_1^*$, $\beta_1^* < \beta$, and a conditional error function $A(p_1)$ such that

$$-P_{\delta_{\min}}\{p_1 \leq \alpha_1^*\} = 1 - \beta_1^*$$

$$-\alpha_1 + \int_{\alpha_1}^{\alpha_1^*} A(p_1) dp_1 = \alpha$$

- reject H_0 if $p_1 \leq \alpha_1$; accept H_0 if $p_1 > \alpha_1^*$; continue, otherwise
- reject H_0 if $p_2 \leq A(p_1)$

Validity

Type I error rate is controlled if p_1 and p_2 are independent

Two-Stage Designs

Example 1

Two-stage group sequential designs

- fixed second stage sample size n_2
- p_1 and p_2 are independent
- $A(p_1) = 1 \Phi\{\mu \gamma \Phi^{-1}(1 p_1)\}$
 - $-\Phi(\cdot)$ is the cdf of the standard normal distribution
 - $-\gamma = \{w/(1-w)\}^{1/2}$ where w is the information fraction
 - $-\mu$ is calculated to satisfy

$$\alpha_1 + \int_{\alpha_1}^{\alpha_1^*} A(p_1) dp_1 = \alpha$$

Example 2

Two-stage adaptive designs where

$$n_2 = n_2(p_1)$$

Two-Stage Adaptive Designs

Notion of Adaptation

Formalization of the process for

- interim analysis
- decision making on modifications
- assessing the final trial outcomes

Three basic components

- interim data
- adaptation rule
- final trial outcome

Notations

- ullet interim data X_* and full data X
- a countable set M of modifications
- adaptation rule $g: X_* \longrightarrow M$
- ullet a procedure $p_m(X)$ for each $m \in M$
- the adaptive procedure $p_g = p_{g(X_*)}(X)$

Two-Stage Adaptive Designs Stochastic Independence

Let $X = (X_*, X^*)$ where X_* and X^* are independent. Consider

- $\bullet \ g = g(X_*)$
- $p_1 = p_1(X_*)$
- $p_{2m} = p_{2m}(X^*)$ for each $m \in M$
- $p_2 = p_{2g}$
- i) (g, p_2) is independent of p_1 iff g and p_1 are independent, or
- ii) (g, p_1) is independent of p_2 iff p_{2m} follow the same distribution for all $m \in M$

Application

Sample size adjustment (Liu and Chi, 2001)

$$g = n_2(p_1) = \{z_{A(p_1)} + z_{\beta_2}\}^2 / \delta_{\min}^2$$

where

•
$$\beta_2 = (\beta - \beta_1^*)/(\beta_1 - \beta_1^*)$$

•
$$\beta_1 = P_{\delta_{\min}}\{p_1 > \alpha_1\}$$

Efficiency

Assumptions

- ullet same n_1 and $lpha_1$, and therefore, $1-eta_1$
- same 1β

Notations

- d for design
- $N_d(\delta)$ for average sample size
- Thall, Simon and Ellenberg (1988)
 - $-\pi$ for probability that $\delta = \delta_m$
 - $-1-\pi$ for probability that $\delta=0$
- $\mathcal{N}_d(\pi) = \pi N_d(\delta_m) + (1 \pi) N_d(0)$

Definition

Design d_2 is more efficient than design d_1 if and only if $\mathcal{N}_{d_2}(\pi) \leq \mathcal{N}_{d_1}(\pi)$

Effectiveness

Notations

- ullet C(n) for cost of experimentation, increasing in n
- S(n) for payoff in future for rejecting H_0 , decreasing in n

Benefit

$$B_d(\delta)$$
= $[\{S(n_1) - C(n_1)\}P_1 - C(n_1)Q_1]$
+ $\int_{\alpha_1}^{\alpha_1^*} \{S(n_1 + n_2)P_2 - C(n_1 + n_2)\}f_{\delta}(p_1)dp_1$

where

- $P_1 = P_{\delta} \{ p_1 \le \alpha_1 \}$
- $Q_1 = P_{\delta}\{p_1 > \alpha_1^*\}$
- $n_2 = n_2(p_1)$
- $P_2 = P_{\delta} \{ p_2 \le A(p_1) \mid p_1 \}$
- $f_{\delta}(p_1)$ for density of p_1

Risk

$$R_d(\delta) = C(n_1) + \int_{\alpha_1}^{\alpha_1^*} C(n_1 + n_2) f_{\delta}(p_1) dp_1$$

Effectiveness

Definition

Design d_2 is more effective than design d_1 if and only if

i)
$$R_{d_2}(\delta) \leq R_{d_1}(\delta)$$
 for $\delta \geq \delta_{\min}$, and

ii)
$$B_{d_2}(\delta) \geq B_{d_1}(\delta)$$
 for $\delta \geq \delta_{\min}$

Incremental Risk Benefit Ratio

$$IRBR(\delta)$$

= $\{R_{d_2}(\delta) - R_{d_1}(\delta)\}/\{B_{d_2}(\delta) - B_{d_1}(\delta)\}$

Alternative Formulations

- ullet $B_d(\delta)$ in health outcomes, and $R_d(\delta)$ in monetary cost
- ullet $B_d(\delta)$ and $R_d(\delta)$ both in health outcomes
- ullet $B_d(\delta)$ and $R_d(\delta)$ in personal benefit and loss

Clinical Trial

- double-blind parallel study to compare an experimental drug to a placebo
- response to treatment, success or failure
- response rate of the drug $r_2 = 0.5$
- response rate of the placebo $r_1=0.35$ but higher rate $r_1=0.4$ possible
- $\pi = 0.5$

Benefit-Risk Considerations

- C(n) = 2 + 0.05n
- S(n) = 10(120 12 n/30)

Test Statistic and Effect Size

- $T = (2n)^{1/2} \{ arcsin(\hat{r}_2^{1/2}) arcsin(\hat{r}_1^{1/2}) \}$
- $\delta = (2)^{1/2} \{ arcsin(r_2^{1/2}) arcsin(r_1^{1/2}) \}$
- $\delta_{\min} = 0.1424$

Common Design Features

- $\alpha = 0.025$, $\beta = 0.05$
- w = 0.5
- $\alpha_1 = 0.00153$ by O'Brien-Fleming α -spending function
- $n_1 = 338$ per group
- $1 \beta_1 = 0.3648$

Comparison of Designs

	d_{gs}	da_1	$\overline{d_{a_2}}$
$oldsymbol{eta_1^*}$	0.02159	0.02946	0.02938
$lpha_1^{\overline{*}}$	0.27595	0.23329	0.23365
$\dot{\mathcal{N}_d}(\pi)$	487.81	491.70	470.76
$B_d(\delta_{min})$	823.87	831.07	836.40
$R_d(\delta_{min})$	29.26	28.17	27.46

 d_{gs} — two-stage group sequential design

 d_{a_1} — two-stage adaptive design

 d_{a_2} — adaptive design with upto three stages

Conditional Power

solid —
$$d_{gs}$$
 dash — d_{a_1} and d_{a_2}

Mean Second Stage Sample Size

Conditional Benefit

Benefit Function

IRBR

solid — d_{a_1} against d_{gs}

dash — d_{a_2} against d_{gs}

Discussion

Sample Size Adjustment

- adaptive designs can be more efficient and effective by allowing sample size increase
- adaptive designs can be more efficient and effective without sample size increase
- extended UMP criteria of Tsiatis and Mehta (2002) are problematic
- sufficiency is no guarantee of optimality

Other Adaptations

- dose or regimen selection
- change or selection of endpoints
- improvement of statistical analysis

New Clinical Development Paradigm

- phase 2/3 combination designs
- accelerated approval of life-saving drugs