Patient Preferences and BenefitRisk Tradeoffs in Interception of Alzheimer's Disease

2017 ASA Biopharmaceutical Section Regulatory-Industry Statistical Workshop

September 26, 2017
Bennett Levitan, Md-PhD
Department of Epidemiology
Janssen Research \& Development, LLC

Acknowledgements

Co-Authors

- Rachael DiSantostefano, Janssen R\&D
- Reed Johnson, Duke University
- Shelby Reed, Duke University
- Johannes Streffer, Janssen R\&D
- Jui-Chen Yang, Duke University

Contact Info: blevitan@its.jnj.com

Funding and Disclosures

- This work was supported by a research agreement between Duke University and Janssen R\&D, LLC.
- Drs. Levitan, DiSantostefano and Streffer are employees of Janssen R\&D, LLC
- The statements made in this presentation are those of the authors and not necessarily those of the company or institution that employ them.
$\underset{y}{\text { janssen }} 5$

Alzheimer's Disease Stages \& Intervention Points

Goal: Disease Modifying Therapies

Biomarkers inform risk and progression

Benefit-risk in Alzheimer's Disease Interception

- Suppose a brain test shows that you will get Alzheimer's disease in 5-10 years. You are healthy now and have intact memory.
- A novel treatment can delay the onset of the disease by a few years, but there are side effects
- How tolerant are you to these side effects - to delay a disease that you may not live long enough to have?
\rightarrow Patient preference study needed to assess this tradeoff

Objectives

- To quantify benefit-risk tradeoffs of interception therapy for Alzheimer's Disease (AD) among older adults
- To investigate heterogeneity of these expressed preferences

Study and Survey Designs

- US adults ($\mathrm{n}=1004$) aged between 60 and 85, no current memory problems or diagnoses
- Discrete-choice experiment
- 10 trade-off questions
- Participants are told to assume they will develop Alzheimer's Disease based on a biomarker
- Choice between treatment or no treatment
- Remaining lifespan shown

Status Quo: Remaining Life and AD

12-year Version

No Med

16-year Version

No Med

Status Quo vs. Treatment Efficacy

Trade-off Task Example 1: Alzheimer's Disease Preference Study

Please think about the following two options, No Medicine and Medicine.
If you need to see the description for a medicine effect, place your cursor on the yellow text.

Which would you choose if these were your only options?

- No medicine
- Medicine

Trade-off Task Example 2: Alzheimer's Disease Preference Study

Please think about the following two options, No Medicine and Medicine.
If you need to see the description for a medicine effect, place your cursor on the yellow text.

Which would you choose if these were your only options?

- No medicine
- Medicine

Regression Analysis: Alternative Choice-Models Studied

- Taste heterogeneity

- Random-parameters logit (RPL) using Stata: taste heterogeneity modeled as normal distributions
- Scale-adjusted latent-class analysis (LCA) using LatentGOLD: taste heterogeneity modeled as discrete classes with similar preferences adjusted for different variances
- RPL
- Linear variables for each attribute, indicated by Box-Cox specification tests
- Interaction term for nonlinearity in time with MCl and time with dementia combinations
- An opt-out dummy representing No Med
- Rescaled log-odds parameter estimates to facilitate comparisons

Sample Characteristics

	Overall $(\mathbf{N}=1004)$	Age 60 to 74 $(\mathrm{n}=670)$	Age 75 to 85 $(\mathrm{n}=\mathbf{3 3 4})$
Mean Age	70	66	78
Female	50%	50%	49%
White race	92%	90%	96%
4-year college degree or more	41%	41%	41%
Have had a test for memory problems or AD	5%	4%	7%
Have known one or more family members or friends with AD or other serious memory problem	64%	62%	68%

RPL: 12-Year Version, Age 75-85

RPL: Maximum Acceptable Risk (MAR) in exchange for 2 more years of normal memory (1 MCI, 1 AD year avoided)

RPL: Maximum Acceptable Risk (MAR) in exchange for 2 more years of normal memory (1 MCI, 1 AD year avoided)

Latent-Class Analysis (LCA)

Class-Membership Probability
 $$
\operatorname{Pr}[\text { Class }=q(Z)]
$$

Individual has tastes q that depend on individual characteristics Z

Class-specific Choice Probability
 $$
\operatorname{Pr}(\text { Choices } \mid \text { Class }=q, X)
$$

Individual makes choices given tastes q and attributes X

Unconditional Choice Probability
 $\operatorname{Pr}($ Choices $)=$
 $\sum_{q=1}^{3} \operatorname{Pr}($ Choices \mid Class $=q, X) \cdot \operatorname{Pr}[$ Class $=q(Z)]$

Individual makes choices unconditional on class membership

LCA: 3 Classes of Benefit-Risk Tradeoffs

Dementia-Averse

Proportion of sample	40\%	33\%	27\%
Primary concerns	- Prefer medication	- Prefer no medication	- Strongly prefer medication
	- Trade off among all attributes	- More concerned about risks	- More concerned about efficacy

LCA: 3 Classes of Benefit-Risk Tradeoffs

Dementia-Averse

Proportion of sample	40\%	33\%	27\%
Primary concerns	- Prefer medication	- Prefer no medication	- Strongly prefer medication
	- Trade off among all attributes	- More concerned about risks	- More concerned about efficacy
Statistically significant participant-level covariates	- Younger		- Older
	- More likely to report health problems	- Less likely to report health problems	
	- Less likely to have AD caregiving experience	- Least likely to have AD caregiving experience	- Most likely to have AD caregiving experience
		- More likely to be assigned to 16 -year version	- More likely to be assigned to 12 -year version

Conclusions

- Patients would accept 8 - 16\% change disabling stroke or sudden death for 2 additional years normal memory
- Dependent on age and years of normal memory remaining
- Identified 3 distinct subgroups of patients
- Traders
- Treatment side effect averse
- Dementia averse

Groups differed by age, general health, AD caregiving experience, and time frame assigned

- 2 in 3 were willing to accept treatment risks to delay AD 1 in 3 were risk averse with strong preference for no Tx

Methodological Take-Away Messages

- RPL results
" Describe preferences for "average" respondents
- Can be useful for strategy, B-R and policymaking
- LCA results
- Avoid ecological fallacies
- Describe heterogeneity, identifying groups with similar preferences
- Help guide regulatory and clinical decision making

