Model-assisted design for drug combination dose-finding trials

Ying Yuan

Department of Biostatistics The University of Texas MD Anderson Cancer Center

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug Combination

Ying Yuan Model-assisted design for drug combination dose-finding tria

æ

Drug Combination

Synergistic treatment effect!

Ying Yuan Model-assisted design for drug combination dose-finding tria

Challenges of drug combination trials

- Larger searching space \implies larger sample size required!
- Doses are only partially ordered in toxicity due to complicated drug-drug interaction

Drug A

Ying Yuan Model-assisted design for drug combination dose-finding tria

(日)

Challenges of drug combination trials

- Larger searching space ⇒ larger sample size required!
- Doses are only partially ordered in toxicity due to complicated drug-drug interaction

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Challenges of drug combination trials

- Larger searching space ⇒ larger sample size required!
- Doses are only partially ordered in toxicity due to complicated drug-drug interaction

Challenges of drug combination trials

- Larger searching space \implies larger sample size required!
- Doses are only partially ordered in toxicity due to complicated drug-drug interaction

Challenges of drug combination trials

- Larger searching space \implies larger sample size required!
- Doses are only partially ordered in toxicity due to complicated drug-drug interaction => single-agent dose-finding methods cannot be directly used for combination trials.

Challenges of drug combination trials

Multiple MTDs may exist!

MTD contour

Ying Yuan Model-assisted design for drug combination dose-finding tria

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 のへで

A key design question

• A fundamental question when designing a combination trial:

Are we interested in finding one MTD or the MTD contour (multiple MTDs)?

- The answer to this question determines the choice of different design strategies.
- This important issue, unfortunately, is largely overlooked in practice.
- We here focus on finding a MTD, refer to Yuan and Zhang (2017) for designs to find the MTD contour.

(日)

Three types of design

- Algorithm-based designs
 - Dose transition is based on a set of prespecified rules/algorithm, e.g., 3+3 design or A+B design
 - Transparent, easy to implement, but perform poorly

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Three types of design

- Algorithm-based designs
 - Dose transition is based on a set of prespecified rules/algorithm, e.g., 3+3 design or A+B design
 - Transparent, easy to implement, but perform poorly
- Model-based designs
 - A dose-toxicity model is assumed, and then updated based on accrued data to guide the dose transition, e.g., most existing drug combination trial designs
 - Good performance, but less transparent and difficult to implement

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Three types of design

- Algorithm-based designs
 - Dose transition is based on a set of prespecified rules/algorithm, e.g., 3+3 design or A+B design
 - Transparent, easy to implement, but perform poorly
- Model-based designs
 - A dose-toxicity model is assumed, and then updated based on accrued data to guide the dose transition, e.g., most existing drug combination trial designs
 - Good performance, but less transparent and difficult to implement

Model-assisted designs

- A class of designs that <u>utilize a model for efficient decision making</u>, similar to the model-based design, but its <u>rule of dose escalation/deescalation</u> <u>can be pretabulated</u> before the onset of the trial in a fashion similar to the algorithm-based design (Yan, Mandrekar and Yuan, 2017)
- Transparent, easy to implement and good performance
- Examples: mtpi (Ji et al., 2007), BOIN (Liu and Yuan, 2015), and keyboard design (Yan, Mandrekar and Yuan, 2017).

< 日 > < 回 > < 回 > < 回 > < 回 > <

Finding a single MTD

- Many novel model-based combination designs have been proposed to find a single MTD (Thall, et al, 2003; Yin and Yuan 2009a, 2009b; Braun and Wang, 2010; Yuan and Yin, 2011; Wage et al., 2011; Riviere, et al., 2014, 2015; ...).
- These designs perform well in simulation, but are rarely used in practice.
 - Statistically and computationally complicated
 - Lack of easy-to-use software
 - Model-based, thus robustness can be a potential issue because of complicated two-dimensional dose searching space. In addition, incoherent dose escalation could be rampant
- Riviere et al. (2014) reviewed 162 drug-combination phase I trials published 2011-2013, among which 88% used the 3+3 design.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Coherent design

- A design is coherent if it will never escalate the dose when the latest treated patient experiences toxicity; and will never deescalate the dose when the latest treated patient does not experience toxicity (Cheung, 2005).
- A design is long-memory coherent if it will never escalate the dose when the observed toxicity rate at the current dose is higher than the target toxicity rate; and will never deescalate the dose when the observed toxicity rate at the current dose is lower than the target toxicity rate (Liu and Yuan, 2015).
- Long-memory coherent is a natural requirement in practice.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

BOIN drug-combination design

- The Bayesian optimal interval (BOIN) drug-combination design (Lin and Yin, 2016; Yuan and Zhang, 2017) is a model-assisted design that is as transparent as the 3+3 design, but yields substantially better performance.
- The BOIN drug-combination design is long-memory coherent, which may not be true for most existing model-based drug-combination designs.
- The BOIN drug-combination design is an extension of the BOIN single-agent design (Liu and Yuan, 2015), and makes the decision of dose escalation/de-escalation based on the same rule as the latter.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Bayesian optimal interval (BOIN) design

DLT rate at the current dose = No. of patients experienced DLT at the current dose

BOIN dose escalation/deescalation rule

DLT rate at the current dose = $\frac{\text{No. of patients experienced DLT at the current dose}}{\text{No. of patients treated at the current dose}}$

<ロ> <同> <同> < 同> < 同> < 同> 、

크

Escalation/de-escalation boundaries

Table: The escalation/de-escalation boundaries (λ_e , λ_d) under the BOIN design for different target toxicity rates^{*}.

	Target toxicity rate ϕ								
boundaries	0.15	0.2	0.25	0.3	0.35	0.4			
λ_{e}	0.118	0.157	0.197	0.236	0.276	0.316			
λ_d	0.179	0.238	0.298	0.358	0.419	0.479			

* using the default underdosing toxicity rate $\phi_1 = 0.6\phi$ and overdosing toxicity rate $\phi_2 = 1.4\phi$.

Escalation/de-escalation boundaries

Table: The escalation/de-escalation boundaries (λ_e , λ_d) under the BOIN design for different target toxicity rates^{*}.

	Target toxicity rate ϕ								
boundaries	0.15	0.2	0.25	0.3	0.35	0.4			
λ_{e}	0.118	0.157	0.197	0.236	0.276	0.316			
λ_d	0.179	0.238	0.298	0.358	0.419	0.479			

* using the default underdosing toxicity rate $\phi_1 = 0.6\phi$ and overdosing toxicity rate $\phi_2 = 1.4\phi$.

BOIN design with target toxicity rate of 25%

DLT rate at the current dose = $\frac{\text{No. of patients experienced DLT at the current dose}}{\text{No. of patients treated at the current dose}}$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Statistical principle behind BOIN design

 The BOIN is obtained by minimizing the decision error for dose escalation/deescalation within the whole class of nonparametric designs that do not assume a parametric dose-response curve

A class of nonparametric designs

- The first cohort are treated at the lowest dose level.
- At the current dose level j:
 - if $\hat{\pi}_{T,j} \leq \lambda_{1j}$, escalate
 - if $\hat{\pi}_{T,j} \geq \lambda_{2j}$, deescalate
 - otherwise, i.e., $\lambda_{1j} < \hat{\pi}_{T,j} < \lambda_{2j}$, retain

where $\lambda_{1j} \equiv \lambda_{1j}(\mathbf{n}_j, \phi)$ and $\lambda_{2j} \equiv \lambda_{2j}(\mathbf{n}_j, \phi)$ denote the dose escalation and deescalation boundaries.

Sepeat step 2 until the maximum sample size is reached.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A class of nonparametric designs

- The first cohort are treated at the lowest dose level.
- At the current dose level j:
 - if $\hat{\pi}_{T,j} \leq \lambda_{1j}$, escalate
 - if $\hat{\pi}_{T,j} \geq \lambda_{2j}$, deescalate
 - otherwise, i.e., $\lambda_{1j} < \hat{\pi}_{T,j} < \lambda_{2j}$, retain

where $\lambda_{1j} \equiv \lambda_{1j}(\mathbf{n}_j, \phi)$ and $\lambda_{2j} \equiv \lambda_{2j}(\mathbf{n}_j, \phi)$ denote the dose escalation and deescalation boundaries.

Repeat step 2 until the maximum sample size is reached.

Because λ_{1j} and λ_{2j} can freely vary across the dose levels (i.e., *j*) and the number of patients treated (i.e., *n_j*), this class of designs include ALL possible nonparametric designs that do not impose a dose-toxicity curve.

・ロト ・四ト ・ヨト ・ヨト

Notations and setup

Specify three point hypotheses

- φ₁ is the highest toxicity probability that is deemed subtherapeutic (i.e., below the MTD) such that dose escalation should be made
- φ₂ is the lowest toxicity probability that is deemed overly toxic such that dose deescalation is required
- Example: $\phi = 0.3$, $\phi_1 = 0.2$ and $\phi_2 = 0.4$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remarks on the hypotheses

- The purpose of specifying three hypotheses, H_0 , H_1 and H_2 , is NOT to represent the truth and conduct hypothesis testing.
- *H*₁ and *H*₂, or more precisely δ₁ = φ₁ φ and δ₂ = φ₂ φ, represent the minimal differences (or effect sizes) of practical interest to be distinguished from the target toxicity rate φ (or *H*₀), under which we want to minimize the average decision error rate for the trial conduct.
- This is analogous to power calculation.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remarks on the hypotheses

- In practice, we should avoid setting φ₁ and φ₂ at values very close to φ because of the limited power due to small sample sizes of phase I trials.
 - At the significance level of 0.05, we have only 6% power to distinguish 0.35 from 0.25 with 30 patients.
- As default values, we recommend $\phi_1 = 0.6\phi$ and $\phi_2 = 1.4\phi$.

• e.g., when $\phi = 0.25$, $\phi_1 = 0.15$ and $\phi_2 = 0.35$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Correct and incorrect decisions

- The correct decisions under H₀, H₁ and H₂ are R, E and D, respectively, where R, E and D denote dose retainment (of the current dose level), escalation and deescalation.
- The incorrect decisions under H₀, H₁ and H₂ are R
 , E
 and D
 , where R
 denotes the decisions complementary to R
 (i.e., R
 includes E and D), and D
 and R
 are defined
 similarly.

Decision error rate

- The probability of making an incorrect decision (or decision error rate) at each of the dose assignments is given by
 - $\alpha \equiv \text{pr(incorrect decision on dosing)}$
 - $= \operatorname{pr}(H_0)\operatorname{pr}(\bar{\mathcal{R}}|H_0) + \operatorname{pr}(H_1)\operatorname{pr}(\bar{\mathcal{E}}|H_1) + \operatorname{pr}(H_2)\operatorname{pr}(\bar{\mathcal{D}}|H_2)$

Decision error rate

 α

• The probability of making an incorrect decision (or decision error rate) at each of the dose assignments is given by

$$= \operatorname{pr}(\operatorname{incorrect decision on dosing})$$

$$= \operatorname{pr}(H_0)\operatorname{pr}(\bar{\mathcal{R}}|H_0) + \operatorname{pr}(H_1)\operatorname{pr}(\bar{\mathcal{E}}|H_1) + \operatorname{pr}(H_2)\operatorname{pr}(\bar{\mathcal{D}}|H_2)$$

$$= \operatorname{pr}(H_0)\{\operatorname{Bin}(n_j\lambda_{1j}; n_j, \phi) + 1 - \operatorname{Bin}(n_j\lambda_{2j} - 1; n_j, \phi)\}$$

$$+ \operatorname{pr}(H_1)\{1 - \operatorname{Bin}(n_j\lambda_{1j}; n_j, \phi_1)\}$$

$$+ \operatorname{pr}(H_2)\operatorname{Bin}(n_j\lambda_{2j} - 1; n_j, \phi_2)$$

Optimal escalation/deescalation boundaries

 Assuming the non-informative prior that the current dose has the equal probability of being at, above or below the MTD, the optimal dose escalation/deescalation boundaries that minimize incorrect dose assignment are given by

$$\begin{aligned} \lambda_{1j} &= \log\left(\frac{1-\phi_1}{1-\phi}\right) / \log\left(\frac{\phi(1-\phi_1)}{\phi_1(1-\phi)}\right) \\ \lambda_{2j} &= \log\left(\frac{1-\phi}{1-\phi_2}\right) / \log\left(\frac{\phi_2(1-\phi)}{\phi(1-\phi_2)}\right) \end{aligned}$$

- The optimal escalation/deescalation boundaries are independent of n_i and j !!
- This makes the BOIN extremely simple because the same pair of dose escalation/de-escalation boundaries can be used throughout of the trial.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Dose escalation using the BOIN design

<ロト <回 > < 回 > < 回 > .

크

Statistical properties of the BOIN

Coherence

The BOIN design is (long-memory) coherent in the sense that the design will never escalate the dose when the observed toxicity rate \hat{p}_j at the current dose is higher than the target toxicity rate ϕ ; and will never deescalate the dose when the observed toxicity rate \hat{p}_j at the current dose is lower than the target toxicity rate ϕ

• Example: suppose target toxicity rate = 30%, if 1/3 has toxicity, the BOIN design will never escalate dose; if 0/3 has toxicity, the design will never deescalate dose.

Consistence

Under the BOIN design, dose allocation and selection converge to the target dose.

BOIN drug-combination design

- The BOIN drug-combination design uses the same escalation/de-escalation rule as the BOIN single-agent design
- Thus, the BOIN drug-combination design is coherent, consistent and easy to implement in practice.
- The only difference is that, in combination trials, when we decide to escalate or de-escalate the dose, there are more than one neighbor doses that we can move to.

< 回 > < 回 > < 回 >

BOIN drug-combination design

- Let A_jB_k denote the combination of dose level j of agent A with dose level k of agent B.
- Let p_{jk} denote the toxicity rate of $A_j B_k$.
- The BOIN drug-combination design makes its choice based on Pr(p_{jk} ∈ (λ_e, λ_d)|data), which measures how likely the combination has acceptable toxicity given the observed data.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・
Dose escalation

• When the BOIN rule says escalation, we escalate the dose to $A_{j+1}B_k$ or A_jB_{k+1} , the one that has the largest value of $Pr(p_{j'k'} \in (\lambda_e, \lambda_d) | n_{j'k'}, y_{j'k'})$, where (j', k') = (j + 1, k) or (j, k + 1).

Dose de-escalation

When the BOIN rule says de-escalation, we de-escalate the dose to A_{j−1}B_k or A_jB_{k−1}, the one that has the largest value of Pr(p_{j'k'} ∈ (λ_e, λ_d)|n_{j'k'}, y_{j'k'}), where (j', k') = (j − 1, k) or (j, k − 1).

Ying Yuan Model-assisted design for drug combination dose-finding tria

Software

- Windows desktop program for implementing the BOIN combination design is freely available at MD Anderson Biostatistics software download website https://biostatistics.mdanderson.org/ softwaredownload/SingleSoftware.aspx? Software_Id=99
- Online app at http://www.trialdesign.org
- R package "BOIN" available at CRAN

	Quan	titative Research Computing Software Online Site Contact
HE UNIVERSITY OF TEX MDAnder Cancer Ce	son Softwar	e Download Kiosk
ast Modified Date	Product Name	Brief Description
2017-06-09	BOIN Design Desktop Program	gayesian Optimal Interval (BOIN) design for phase I trials to find the maximum tolerated dose (MTD) for both single-agent and drug-combination trials
2017-01-18	One Arm Time to Event Simulator	Design and simulate One-Arm Time-to-Event clinical trials using a Windows GUI
2017-01-13	Adaptive Randomization	Outcome-adaptive randomization for clinical trials
2016-09-14	BMA CRM	Dose-finding software using the Bayesian Model Averaging Continual Reassessment Method, including Data Augmentation
2016-06-28	MAROET	Phase I/II dose-finding with utility-based adaptive randomization and ordinal efficacy and toxicity.
2016-04-25	CATBUB Design	Categorical Dutcome Utility-Based Designs for Randomized Comparative Clinical Trials with Discrete Outcomes (formerly called 'BUB Design')
2016-04-20	UZOET	Phase I-II dose-pair-finding based on utilities of 4-level ordinal efficacy and toxicity.
2015-09-23	WEMM	Wavelet-based functional mixed model software
2015-02-12	Beta Binomial Distribution Demo	A learning tool to demonstrate a beta-binomial distribution prior being updated to become a posterior distribution
2014-08-27	Pinnacle	A method for detection and quantification of protein spots from 2-D gel electrophoresis images.
	EffTox	Phase I/II dose-finding based on efficacy and toxicity
2014-05-22	Predictive Probabilities	Predictive probability interim analysis of clinical trials
2014-05-22 2014-04-01		Calculate the probability of one random variable being larger than another
2014-05-22 2014-04-01 2013-11-26	Manuality Calculator	
2014-05-22 2014-04-01 2013-11-26 2013-11-22	ParameterSolver	Solve for distribution parameters for common distributions
2014-05-22 2014-04-01 2013-11-26 2013-11-22 2013-07-25	Inequality Calculator ParameterSolver Multc Lean	Solve for distribution parameters for common distributions Monitoring toxicity and efficacy in phase II clinical trials
2014-05-22 2014-04-01 2013-11-26 2013-11-22 2013-07-25 2013-01-09	Inequality Calculator ParameterSolver Multo Lean Bayes Factor Binary	Solve for distribution parameters for common distributions Mentoring toxicity and effective in phase II clinical trails A Bayesan hypothesis tech-bade method for clinical trails with single arm binary patient outcomes

Ying Yuan Model-assisted design for drug combination dose-finding tria

æ

	Quantitative Re	search Com	outing	Software Online Site Contact Us
the UNIVERSITY OF TEXAS MDAnderson Cancer Center	Software Dow	nload K	iosk	17,000+ user
BOIN Design Desktor	Program V1.0.4		Date Last Modified: 06/09/20	17
File Name		Size	Notes	
Download BOIN_V1.0.4.zip	Organization:	Occupation: Acad	Zip file containing the installer for Windows version termia	
Download BOIN_V1.0.4.zip Email Address: Your email will be used to send you occasional Bayesian Optimal Interval (II The cottimal Interval design is a pose	Organization: Information about software updates. It will NOT be shared 300N) Design Desktop Program It Bauerisen chame I chickel Heid deelen for Bortlor.	55673 KB Occupation: Acas with third parties.	Zip file containing the installer for Windows version terma	ale. Exticite observe to
Deventional BOIN_V1.0.4.xp Email Address: Your email will be used to send you occessoral Bayesian Optimal Interval (The optimal Interval design is a nove ethnic considerations and optimizes the de Devancements	Organization: Information about software updates. It will NOT be shared SOIN) Design Desktop Program Beyesten phase I clinical trial design for finding easignment for each patient enrolled into the trial.	55673 K8 Cocupation: Aces with third parties.	20 the containing the installer for Windows version	alls. It strictly adheres to
Detroited Tork_V1.0.4.20 Email address: Tore email will be used to send you occessored Benardian and the send to send you occessored Detroited Interval digits Tore optimal Interval Detroited Detroit	Organization: Will NOT be shared reformation about software updates. It will NOT be shared SOIN) Design Desktop Program Beyestein phase I clinical trial design for finding assignment for weld particle articles rate to the third. and catal "FOIC" implements the Expressin optimal Harring containation truits asking as MT contact. The particular trains the charact of program them to subtranspace or or and the the charact of program them to subtranspace.	s5673 KB Cocupation: Acas with third parties. the maximum tolerate al (800H) designs of Lux as another advantage of the BO re continual resessment.	20 the containing the installer for Windows version emma def dose (MTD) for single-agent and drug-combination tri d dose (MTD) for single-agent and drug-combination tri d dose (MTD) for single-agent trait, of the and the [2] for drug-combination of tags) at start if can be implemented in a single way substrib	age, It strictly adheres to insteam traits weaking a is tradicious] + 3 disrays, discourse of dimoses,
Bonk v/1.0.4.20 B	Organization: [Information about software updates: R will NOT be alwards BOIN) Design Desktop Program Boyesham phase: Linking I trail design for finding assignment of each plasmer enrice the trail of the soft and clinical of the soft plasmer enrice the software of the software and clinical of the software of the software of the software software of experiments and software of the software trains of the software of the software of the software software of the software of the software of the software trains of the software of the software of the software software of the software of the software of the software of the software trains of the software of	55673 K8 Cocupation: Acad with third parties. the maximum toleration and (50th) designs of Lu as innent advantage of The BD and Cothy designs of Lu as which advantage of the BD	22 the containing the installer for Windows version	dg. It surchly adheres to nation that seeking a sector that seeking a concert of discusses.

Ying Yuan Model-assisted design for drug combination dose-finding tria

æ

<ロ> <同> <同> < 同> < 同> < 同> <

<ロト <回 > < 回 > < 回 > .

mber a	of Repetitions: 10	00		÷					Abort Output Protocol Document (Word) Str	nulation Output He
anarios										
Duplic	ate Selected Scena	10	<u>)</u>	Delete Sele	cted Scen	ario	O Sh	hift Scenario Up 💧 💧		
Add N	lew Scenario		÷				Sh	hift Scenario Down 🛛 🔻		
	Scenario Name	Dose B-> \Dose	1	2	з	4	5	<u>^</u>		
>	Scenario 1	1	0.04	0.08	0.11	0.15	0.3			
		2	0.06	0.09	0.12	0.3	0.47			
		3	0.09	0.11	0.3	0.45	0.59			
	Scenano 2	1	0.02	0.06	0.09	0.13	0.3			
		2	0.07	0.1	0.12	0.51	0.57			
	Scenario 3	1	0.05	0.08	0.11	0.14	0.3			
		2	0.1	0.11	0.3	0.47	0.52			
		3	0.14	0.3	0.45	0.5	0.55			
	Scenario 4	1	0.01	0.04	0.08	0.11	0.3			
		2	0.14	0.3	0.45	0.49	0.53			
		3	0.3	0.46	0.5	0.54	0.58	*		

mber	of Repetitions: 10	00						Simulation Output Help Simulate Abort Output Docume	Protocol nt (Word)	Output Protocol Document (HTML)	Simulation Output He
Dupi	29 icate Selected Scene	rio	<u> </u>	ielete Sele	cted Scen	ario	O Sh	BOIN Simula	ition	Report	
Add	New Scenario		÷				Sh	Bayesian Optimal Interval (BOIN) Ph Thursday, June 22, 2017 9:	ise I Des 6:13 PM	ign (PID-862) Version: 1.0.4 I (GMT -05:00:00)	4 :
Γ	Scenario Name	Dose B-> \Dose	1	2	3	4	5	Trial and Mode	Specif	fications	_
	Scenario 1	1	0.04	0.08	0.11	0.15	0.3	Parameter	Valu	e	
		2	0.06	0.09	0.12	0.3	0.47	Number of Doses - Drug A		3	
		3	0.09	0.11	0.3	0.45	0.59	Starting Dose - Drug A		1	
	Scenario 2	1	0.02	0.06	0.09	0.13	0.3	Number of Doses - Drug B		5	
		2	0.07	0.1	0.12	0.3	0.45	Starting Dose - Drug B		1	
		3	0.12	0.3	0.45	0.51	0.57	Max sample size	3	0	
	Scenario 3	2	0.05	0.05	0.11	0.14	0.52	Cohort size	-	1	
		3	0.14	0.3	0.45	0.5	0.55	Stop trial if # patients assigned to single dose read	es 1	5	
	Scenario 4	1	0.01	0.04	0.08	0.11	0.3	Target Toxicity Probability	0.	3	
		2	0.14	0.3	0.45	0.49	0.53	Acceptable Toxicity - Upper Bound	0.4	2	
		3	0.3	0.46	0.5	0.54	0.58	Acceptable Toxicity - Lower Bound	0.1	8	
								Eliminate Dose Threshold (nE)	0.9	5	
								Number of Repetitions	100	0	
									100	·	

datio	n Setup							Simulatio	on Outpu	it Help	1													
mber	of Repetitions: 10	00		-				s	Simulato	•		Vbort		D	output Pr ocument	otocol (Word)	Do	utput Pro cument (HTML)		Simu	lation	Outpu	6 He
inari	2												Op	eratin	g Chai	racte	ristics	5	_	_	_			•
Dup	licate Selected Scene	irio	0	olete Sele	cted Scen	orio	Shift Scenario Up	Scer	uario 1															
Add	New Scenario		÷				Shift Scenario Down	-						Dos	e Level	of Dr	ug B			_	_	_	_	1
Г	Scenario Name	Dose B->	1	2	3	4	5			True D	LT Ra	e .			Sele	ction '	No .			# Pts	Treat	ted		•
		A							1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	-
Þ.	Scenario 1	1	0.04	0.08	0.11	0.15	0.3	1*	0.04	0.08	0.11	0.15	0.30	0.0	0.4	0.9	3.3	6.7	1.3	0.7	0.5	0.8	0.9	1
H		2	0.06	0.09	0.12	0.3	0.47	2 [†]	0.06	0.09	0.12	0.30	0.47	0.9	0.5	7.6	16.1	5.7	0.7	0.8	1.9	2.8	1.7	
	Scanario 2	1	0.03	0.08	0.09	0.45	0.35		0.00		0.70		0.00				14.0				~ .			
		2	0.07	0.1	0.12	0.3	0.45	· ·	0.09	0.11	0.30	0.45	0.39	0.5	0.4	34.9	14.0	1.5	0.5	4.5	0.4	5.0	2.2	-
		3	0.12	0.3	0.45	0.51	0.57	† Do	ose Le	vel of D	trug A													
	Scenario 3	1	0.05	0.08	0.11	0.14	0.3	Ave	rage N	umber	of Pati	ents: 2	28.7											
		2	0.1	0.11	0.3	0.47	0.52	Sele	ction	Percent	age of	MTD:	55.7											
		3	0.14	0.3	0.45	0.5	0.55	Pone	onteg	o of Pa	tionts T		at MT	Di 22.4										
	Scenario 4	2	0.01	0.04	0.08	0.49	0.52		entag		inclutes a	reates												
		3	0.3	0.46	0.5	0.54	0.55	Perc	entag	e of La	rty Stop	ping	Due to :	loxicity	: 0.0									- 1
-				_	_	_		Scer	iario I															. 1
														Dos	e Level	of Dr	ug B							
										True D	LT Ra	e			Sele	tion '	16			# Pts	Treat	led		
									1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	
												<u> </u>	-	<u> </u>	-			-		_	_			- 1,

nber	of Repetitions: 10	100		¢				Simulation Outp	rut Help		Abort		C D	output Pr soument	otocol (Word)	Do	utput Pro cument (stocol HTML)	1	Smu	dation	Outp	a He
inari	20											Op	eratin	g Chai	acte	ristics	5						1
Dup	licate Selected Scene	río	<u>)</u>	Delete Sele	cted Scen	orio	Shift Scenario Up 🔒	Scenario	1														
Add	New Scenario		÷				Shift Scenario Down 🛛 👼						Dos	e Level	of Dr	ug B							1
	Scenario Name	Dose B->	1	2	3	4	5		True	DLT R	ate .			Sele	tion	%			# Pts	Treat	ted		•
		A					_	1	2	3	4	•		2	3	4	•	1	-2	3	4	•	-
۰.	Scenario 1	1	0.04	0.08	0.11	0.15	0.3	1* 0.04	0.08	0.11	0.15	0.30	0.0	0.4	0.9	3.3	6.7	1.3	0.7	0.5	0.8	0.9	1
		2	0.06	0.09	0.12	0.3	0.47	2* 0.06	0.09	0.12	0.30	0.47	0.9	0.5	7.6	16.1	5.7	0.7	0.8	1.9	2.8	1.7	
	Scenario 2	1	0.02	0.06	0.09	0.13	03	a* 0.00	0.11	0.20	0.45	0.50		0.2	22.0	14.9	1.6			6.4		2.2	ų
		2	0.07	0.1	0.12	0.3	0.45	3, 0.09	0.11	0.30	0.40	0.39	0.5	0.4	34.9	14.0	1.5	0.5	4.5	0.4	5.0	2.2	
		3	0.12	0.3	0.45	0.51	0.57	[†] Dose La	evel of i	Drug A													
	Scenario 3	1	0.05	0.08	0.11	0.14	0.3	Average	Numbe	r of Pa	tients:	28.7											
		2	0.1	0.11	0.3	0.47	0.52	Selection	Percer	tage of	e MTD:	55.7											
	-	3	0.14	0.3	0.45	0.5	0.55	Deserted			T		n. 22.4										
	Scenario 4	1	0.01	0.04	0.08	0.11	0.3	Percenta	e of F	itients	Treater	a at MIT	0:33.4										
		3	0.14	0.46	0.45	0.49	0.53	Percenta	ge of E	urly Sto	opping	Due to	Foxicity	: 0.0									
_		3	0.5	0.40	0.0	0.04	0.00	Scenario	2														
													Dos	e Level	of Dr	ug B			_	_	_		
									True	DLT R	ate			Sele	tion '	%			# Ptr	Trea	ted		1
									2	3	4	5	1	2	3	4	5	1	2	3	4	5	
								1	-	3				-	3				4	3		9	

Bayesian Optimal Interval (80IN) Phase I Design (PID-862): Version 1.0.4 *(New Input File)*													
🗞 Save data file as Bayesian Optimal Interval (BOIN) Phase I Design (PID-862): Version 1.0.4	×												
Search	BOIN (PID-862) 👂	-											
Organize - New folder	· · •			_									
Name Date modified Type	Size	Abort		O Do	utput Protoci cument (Wor	d) D	Output Pri ocument (otocol (HTML)		Sinuk	ation (Output	Help
Desktop 6/22/2017 0-16 DM File folder		-								_	-		
Downloads			Op	perating	Charact	eristic	s						*
Utopbox													
Secont Places =													
(III) Libraries		and a second		Dose	Level of I	Jrug B							
3 Documents		ILI Kate			Selection	1.76			# Pts	Treate	ed		
🕹 Music		3 4		-	2 3				-		*	•	
S. Pictures		0.11 0.15	0.30	0.0	0.4 0.9	3.3	6.7	1.3	0.7	0.5	0.8	0.9	
• Videos - • •		0.12 0.30	0.47	0.9	0.5 7.6	16.1	5.7	0.7	0.8	1.9	2.8	1.7	
File name: ProtocolDocument	•	0.30 0.45	0.59	0.5	8.2 32.	9 14.8	1.5	0.5	2.5	6.4	5.0	2.2	
Save as type: Protocol Document files (*.doc)	•	rug A											
		of Patients:	28.7										
Hide Folders Save	Cancel	tage of MTD:	55.7										
		tients Treated	l at MT	D: 33.4									
2 0.14 0.3 0.45 0.49 0.53 3 0.3 0.46 0.5 0.54 0.58	Percentage of E	arly Stopping	Due to	Toxicity:	0.0								
	Scenario 2										_	_	
				Dose	Level of I	Orug B					_	_	
	True	DLT Rate			Selection	1 %6			# Pts	Treate	ed		
	1 2	3 4	5	1	2 3	- 4	5	1	2	3	4	5	-
	*											• •	

W 6 7 - 6	(B)		ProtocolDo	cument - Microsoft V	Vord		
File Hor	ne Insert Page Lay	out References Ma	ailings Review View		_	_	۵ 3
Print Layout Full Scree Reading Doi	en Web Outline Draft Layout cument Views	Ruler Gridlines Navigation Pane Show	Zoom 100% I One Page Zoom 200% Page Width Zoom	New Arrange Sp Window All	iit View Side by Side iit Synchronous Scrolling iii Reset Window Position Window	Switch Windows - Macros	
	_						Eg.
							Î
							-
	,	Tomplata f		sinction D	rataool Brana	ration	
	'	rempiate i	or Drug-Com			lation	
	W 20	'e will employ the E 015) to find the MT	Bayesian optimal intervi D. The BOIN design is	al (BOIN) design a novel Bayesiar	(Liu and Yuan, 2015; Li dose-finding method th	n and Yin, at	
	op	otimizes patient tre	atment ethics by minim	izing the chance	of exposing patients to	sub-	
	th	e traditional 3+3 d	esign, but is more flexit	le and possesse	s superior operating cha	aracteristics	
	de	at are comparable esigned and will be	conducted using the B	OIN Design Des	ktop Program v1.0.4 (Ve	nieretal.,	
	20	J17).					
	Than	ne target toxicity ra nd treat patients in	te for the MTD is φ = 0. cohorts of size 1. Let (j	3 and the maxim (k) denote the co	um sample size is 30. V Imbination of <i>j</i> th dose le	/e will enroll vel of agent	
	A	and <i>k</i> th dose leve	l of agent B. The trial de	esign is illustrated	in Figure 1 and describ	oed as	
		2. Suppose tha	t the current dose is (j, i	d at the lowest d k). To assign a d	ose to the next cohort of	patients,	
		conduct dos minimizes the	e escalation/de-escalati e probability of incorrec	ion according to t t dose assignme	ne rule displayed in Tab ntwith ol₁ = 0.18 and ol₂	le 1, which = 0.42	
		designated a	s the underdosing and	overdosing toxic	ty rates, respectively. P	ease note	
		a. "Elimi	inate" means the currer	nt and higher dos	es, i.e., the dose set {(j*;	. <i>k</i> *); j*≥j	
		and k these	*≥k}, are eliminated fro doses because they a	m the trial to prev re overly toxic	ent treating any future p	oatients at	
		b. When	a dose is eliminated, t	he dose is auton	atically de-escalated as	described	

Ying Yuan

Model-assisted design for drug combination dose-finding tria

enta								Help
Patient ID	Cohort	Dose Level of A	Dose Level of B	Toxicity OutCome	Treatment Date [Decision Date]	Outcome Date or Date Updated	Show Decision	Combination Trial Conduct
								Decision (Add Patient or View the MTD) button. The Gr Decision dialog bax will appear giving the trial status (ago wait) and the dose that will be assigned to the new patient along with data used to determine the dose. If the status is Go, you can then add the patient to the trial by clicking the Add Patient Doutcome Date, and Toxicity Outcome (toxicity, no toxicity) pending) and click Of we eather the patient will be table. To edit a patient's data after entry, right-click on the row you want to edit and click on the Batter table. The status the table. To edit a patient's data after entry, right-click on the row you heater the outer the context means can also be used to get a tria conduct decision (and add a patient or view the MTD), or delet patients. Existing the selected patients and able inguistins can also exceptibility of clicking the corresponding button below the patient Table.
Get Decision								To review the decision details for a specific patient, click on the Show Decision button for that patient. The values shown in the decision dialog reflect the current information in the table that

lodel Par	rameters Simulation	Run Trial Condi	ist		Bayesian Optimal Interval (BOIN) Phase I Design (PID-862): Version 1.0.4: Add New Patient	
Patie	inta				Patient ID: 1	
	Patient ID	Cohort	Dose Level of A	Do of I	Cohort: 1	bination Trial Conduct
					Dose Level A: 1	and add patients to the trial, click the Get
					Dose Level B: 1	ent or View the MTD) button. The Get
					Treatment Date: 6(22/017	will be assigned to the new patient along mine the dose. If the status is Go, you can to the trial by clicking the Add Patient he Patient form. Enter the Patient ID.
					Outering Date: 62220017	Toxicity Outcome (toxicity, no toxicity,
					This is the date the outcome was observed (or the date of the last time the nation) was assessed for	to enter the patient row in the table.
					toxicity, if the outcome is pending).	a after entry, right-click on the row you
						on the Edit Selected Patient entry on
					Taxicity Outcome: pending	bring up the patient dialog box for the
						ontext menu can also be used to get a trial
						elected patient and deleting patients can
					Innut Validation Status	by clicking the corresponding buttons
					All the data are valid.	4
						details for a specific patient, click on the
	Get Decision					for that patient. The values shown in the
	/ Add Patient or		Edit Selected F	atie	OK Cancel	the current information in the table that 👻
	View the MTD)					

Bayesian Optimal Interval	🗞 Get Decision: Bayesian Optimal Interval (BOIN) Phase I Design (PID-862): Version 1.0.4	
Model Parameters Simul	This decision was made as if the date is: 6/22/2817 Status: GO The trial should continue and a new patient may be treated at dose level (A, B) of (1, 2).	
Patient ID		k the Get
	Demin	(go, wait, ent along), you can I Patient
	The mapper of patients treated at the current days = 1 the mapper of patients experiencing a day of at the current days = 0 Does escalation bondary: escalate if $D(x) = 0$ Does descalation bondary: descalate if $D(x) = 0$	tient ID, toxicity, ible.
		entry on x for the get a trial
		or delete ients can 5 buttons
Get Decision		ck on the wn in the able that
View the MT	Dels for the Decision: 6/2(2017 💿 • 🔥	

del Para	smeters Simulation	Run Trial Cond	uct		Bayesian Optimal Interval (BOIN) Phase I Design (PID-862): Version 1.0.4: Add New Patient	
Patier	vta				Patient ID: 2	
	Patient ID	Cohort	Dose Level of A	Da of l	Cohort: 2	bination Trial Conduct
N.					Dose Level A: 1	and add patients to the trial, click the Get
					Dose Level B: 2	ent or View the MTD) button. The Get
					Treatment Date: 0/22/2017	will be assigned to the new patient along mine the dose. If the status is Go, you can to the trial by clicking the Add Patient be Patient from Enter the Patient ID
					Outcome Date: 6/22/2017	Toxicity Outcome (toxicity, no toxicity,
					This is the date the outcome was observed (or the date of the last time the patient was assessed terricity. If the outcome is pending)	for
					carefy, a ne concerne a periority.	a after entry, right-click on the row you on the Edit Selected Patient entry on
				L	Tesicity Outcome: no toxicity	bring up the patient dialog box for the intext menu can also be used to get a trial add a patient or view the MTD), or delete
					Input Validating Status All the data are valid.	by clicking the corresponding buttons
	Cal Danisian	-		-		details for a specific patient, click on the for that patient. The values shown in the
	(Add Patient or		Edit Selected P	atia	OK Cancel	the current information in the table that
	View the MTD)					

A Bayesian Optimal Interval	🗞 Get Decision: Bayesian Optimal Interval (801N) Phase I Design (PID-862): Version 1.0.4	
Model Parameters Simu Potients	This decision was made as if the date is: 6/22/2817 Status: GO The trial should continue and a new patient may be treated at dose level (A, B) of (2, 2).	
Patient ID	Detois	k the Get . The Get (go, wait, ent along
	The recommended dose conditation for the ment colort of patients is (2, 2) The number of patients treated at the correct dose + 1 (The number of patients expecteding a RG 1 at the fiber number of patients expected in a restrict dose = 0 Bone der-scalable homology: descended (FG 1 > 1	, you can Patient tient ID, toxicity, ble.
		row you entry on x for the get a trial or delete
		ients can ; buttons ck on the
Get Decision (Add Patien View the MT	Dee for the Decision: 622,2017 • Add Peteret. Cannot	table that -

Patient	D Cohort	Dose Level of A	Dose Level of B	Toxicity OutCome	Treatment Date [Decision Date]	Outcome Date or Date Updated	Show Decision	Combination Trial Conduct
1	1	1	1	no taxicity	8/22/2017	8/22/2017	Patient ID 1	To get a dose decision and add patients to the trial, click the Get
2	2	1	2	no toxicity	6/22/2017	6/22/2017	Patient ID 2	Decision (Add Patient or View the MTD) button. The Get
3	3	2	2	pending	6/22/2017	8/22/2017	Patient ID 3	Decision dialog box will appear giving the trial status (go, wait,
								pending) and click OK to enter the patient row in the table
								permung and the the other the partial with it is that. To edit a patients data after entry, right-click on the row you want to edit and click on the Bdit Selected Patient entry on the context means to bring up the patient aliago loss for the selected patient. The context means can also be used to get a trial conduct decision (and add a patient or view the MDT), or delete patients. Editing the selected patient and deleting patients can also be accompliabled by clicking the corresponding buttons below the patient table.
								permung and the Ge to that the partial robot in the same To edit a patients data after enzy, right-click on the row you want to edit and click on the Edit Selected Patient entry on the context means to bring up the patient along how for the selected patient. The context means can also be used to get a still conduct decision (and add a patient or vise the MTU), or defect patients. Editing the selected patient and deleting patients can also be accomplished by clicking the corresponding buttons below the patient table. To review the decision details for a specific patient, click on the Show. Devision hours for that meater. The values shown in the

Online app

http://www.trialdesign.org

An integrated platform for designing clinical trials

Ying Yuan Model-assisted design for drug combination dose-finding tria

▲御▶ ▲ 国▶ ▲ 国≯

Online app

Ying Yuan

Model-assisted design for drug combination dose-finding tria

Online app

		м	DADC - ClickGr	ants Box Grant	KOOD CROPC CROPOPC MyH	A Literature - Fidelity Seminars Box	HTC Merriam-Webster R	iceShuttle Fidelity Ranchive	cis			
THE UNITERITY OF TEAM MDAnderson Cancer Center Making Cancer History V1.0.0; Last Updated: 6/28/2017			Bayesian Optimal Interval Design (BOIN) for Drug Combination Trials Venhong Zhou, Sayu Liu, and Ying Yuan Department of Biostatistics, MO Anderson Cancer Center									
al Setting	Simulation	Trial	Protocol	Next Do	se/Subtrial Selec	t MTD						
	How to Use the B	OIN App	for Combin	ation Trial?	Design Flow Chart	Decision Table						
	Doses			0								
	Drug A		Drug B									
Number of Doses	: 3		5									
Starting Dose Lev	el: 1		1									
	Target Probabi	lity		0								
Target toxicity pro	sbability ϕ :											
0.3												
Use the default	alternatives to minimize	decision em	or (recommende	id).								
Single MTD												
MTD Contour												
	Sample Size			0								
Number of cohort												
10												
Dohort size:												
3												
Stop trial if the #	of patients assigned to	the current	dose reaches:									
15												

Ying Yuan Model-assisted design for drug combination dose-finding tria

Summary

- The BOIN drug-combination design provides a simple, robust, well-performing approach to find a MTD
- The BOIN design can also be used to find the MTD contour (Zhang and Yuan, 2016)
- Easy-to-use software is freely available to implement the BOIN combination designs
- The R package "BOIN" can also be used to design seamless phase I-II combination trials

(日)

References

- Yuan, Y. and Zhang, L. (2017) Designing Early-Phase Drug Combination Trials. Handbook of Methods for Designing, Monitoring, and Analyzing Dose Finding Trials, edited by O'Quigley J., Iasonos, A and Bornkamp, B., Chapter 6, p109-p126.
- Yuan, Y., Hess, K., Hilsenbeck, S. and Gilbert M. (2016) Bayesian optimal interval design: a simple and well-performing design for phase I oncology trials *Clinical Cancer Research*, 22, 4291-430.
- Lin R. and Yin G. (2016) Bayesian Optimal Interval Designs for Dose Finding in Drug-combination Trials, *Statistical Methods in Medical Research*, in press
- Zhang, L. and Yuan, Y. (2016) A Practical Bayesian Design to Identify the Maximum Tolerated Dose Contour for Drug Combination Trials. *Statistics in Medicine*, 35, 4924-4936.
- Yuan, Y. and Yin, G. (2011) Bayesian phase I/II drug-combination trial design in oncology. Annals of Applied Statistics, 5, 924-942.

・ロト ・四ト ・ヨト ・ヨト

э.

Thank you !

Ying Yuan Model-assisted design for drug combination dose-finding tria

・ロト ・ 日 ト ・ 日 ト ・ 日

Backup slides

Ying Yuan Model-assisted design for drug combination dose-finding tria

▲ロト ▲御 ▶ ▲ 国 ▶ ▲ 国

Finding the MTD contour

- Finding the MTD contour (or multiple MTDs) is of intrinsic interest to many combination trials.
 - There are multiple MTDs in the dose matrix. Hard to justify a single one as the target.
 - Finding multiple MTDs provides us an opportunity to find the optimal synergistic treatment effect, e.g., identify the MTD with the highest synergistic treatment effect in subsequent phase II trials.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Finding the MTD contour is more challenging

- Much more challenging than finding a single MTD.
- In order to find all MTDs in the dose matrix, we must explore the whole dose matrix using a limited sample size; otherwise, we risk missing some MTDs
- More susceptible to model misspecification

A (10) + A (10) +

Robustness is an issue

- To find the MTD contour, we must estimate the whole MTD contour correctly.
- In contrast, to find a single MTD, a good local fit to a MTD is adequate.

Ying Yuan Model-assisted design for drug combination dose-finding tria

Finding the MTD contour

- Several designs have been proposed to find the MTD contour (e.g., Thall et al. 2003, Yuan and Yin, 2009; Mander and Sweeting, 2015; Zhang and Yuan, 2016).
- We focus on the waterfall design (Zhang and Yuan, 2016), which is well-performing and easy to implement in practice.

Divide and conquer

- Waterfall design takes the divide and conquer strategy (Yuan and Yin, 2008)
- Partition the dose matrix into a series of blocks (i.e., groups of doses), within which the doses are fully ordered, and then find the MTD within each block.
- Each block is called a "subtrial"
- We conduct each subtrial using the BOIN design

(日本) (日本) (日本)

Waterfall design

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

<ロ> <同> <同> < 同> < 同> < 同> <

æ

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

Drug B

Ying Yuan Model-assisted design for drug combination dose-finding tria

<ロ> <同> <同> < 同> < 同> < 同> 、