Statistical Considerations in Using Meta-analysis for Regulatory Decision Making for Medical Devices

Qin Li

FDA/CDRH/OSB/DBS/Diagnostic Branch II September 27, 2017

Device Validation

- Different stages of medical product development
 - Exploratory stage (development)
 - Pivotal stage (validation)
 - Post-market stage
- Device validation
 - Pivotal clinical studies
 - Prospective study: subjects prospectively enrolled
 - Retrospective study: subject samples retrospectively obtained with a prospective plan
 - Systematic review with meta-analysis
 - Quantitatively combine and integrate comparable studies and trials through a systematical review.

Objective Performance Criteria (OPC) and Performance Goals (PG)

- Design Considerations for Pivotal Clinical Investigations for Medical Devices
 - An OPC needs to be carefully constructed from a prior meta-analytic review of all relevant sources, and a subject-level meta-analysis is preferred.
- Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices
 - From a sufficiently relevant and reliable observational data source, a PG can be constructed using appropriate statistical methods, such as a subject-level meta-analysis.

Benefits and Challenges of using Meta-analysis

- Benefits in using Meta-analysis
 - Better precision of pooled estimate of the effect than from a single study
 - Allow an examination of the existence and the causes of heterogeneity
- Challenges in using Meta-analysis
 - Quality assessment
 - Selection bias, publication bias
 - Heterogeneity across studies
 - Aggregation bias (summary level data vs. individual patient data)

VIDAS BRAHMS Procalcitonin (PCT) Assay

- To help clinicians better predict a patient's risk of mortality or becoming sicker due to sepsis.
- To use PCT as a biomarker to help making antibiotic management decisions (initiation/cessation) in patients with lower respiratory tract infections and sepsis.
- Panel on 11/10/2016; Cleared in Feb, 2017
- Systematic literature reviews and meta-analyses of published randomized control trials were conducted.

510k summary <u>https://www.accessdata.fda.gov/cdrh_docs/reviews/K162827.pdf</u> Panel meeting material <u>https://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/Med_5</u> <u>icalDevicesAdvisoryCommittee/MicrobiologyDevicesPanel/ucm515517.htm</u>

VIDAS BRAHMS Procalcitonin (PCT) Assay

• Algorithm (Device):

LRTI
AB initiationStrongly
discouragedDiscouragedEncouragedStrongly
encouragedAB initiationdiscouraged0.10-0.250.26-0.50>0.50AB cessation:PCT \leq 0.25 ng/mL or decrease > 80%>0.50

- 2 groups: PCT-guided therapy vs. standard therapy
- Endpoints: AB initiation, AB duration, mortality, complications, length of hospital stay
- Hypothesis: Lower AB use in PCT guidance group
 + no significant increase in safety endpoints

Assessment of Study Quality

- Conduct quality assessment before any quantitative analysis.
- The quality assessment of the literature review is crucial to meta-analysis because the validity and reliability of meta-analyses depend on the quality of data extracted from the studies.
 - Cochrane Risk of Bias Assessment tool (Higgins and Green, 2011)
 - Downs and Black instrument (Downs and Black, 1998)
 - Chalmers quality scale, etc.

Assessment of Study Quality

- Treatment assignment mechanism (RCT, non-RCT or single arm)
- Masking (blinding of treatment assignment to physicians, patients, and evaluators of outcome)
- Prospective data or retrospective data
- Pre-specified protocol and sample size
- Cross-over, drop-out, missing data
- Generalizability of study results to current US medical practice, etc.

 \rightarrow Quality score: selection, interpretation, weighting factors in the effect estimation.

Bias Assessment for LRTI (PCT test)

Author, year	Random sequence generation (selection b ias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Branche, 2015	+	8		+	+	+
Briel, 2008	÷	+	+	?	+	-+
Burkhardt, 2010	÷	÷	+	+	,	÷+
Christ-Crain, 2004	+	?		?	+	+
Christ-Crain, 2006	3	+	3	8	198	+
Corti, 2016	*	+			+	ŧ
Kristoffersen, 2009	*	÷			+	+
Long, 2011	?			+	(+)	÷
Schuetz, 2009	+	÷	+	?	+	+
Stolz, 2007	?	?	*	+	*	+
Verduri, 2015	*	ŧ		2	+	?

Low risk

high risk

Generalizability using Non-US Studies

Meta-	Disease	Selected RCT	Sample size			
Analysis	type	Studies	РСТ	Cntrl	US SILES	
Study- Level	LRTI 11 RCTs		2040	2050	1 (year 2015) PCT: n=151 Cntrl: n=149	
	Sepsis	10 RCTs	1735	1754		
Patient- Level	LRTI	LRTI 13 RCTs		1606		
	Sepsis	5 RCTs	287	311	1 in Stolz 2009	

Selection Bias

- Publication bias: studies with insignificant results or poor outcomes are typically not published.
- Approaches to minimize the selection bias
 - Two reviewers perform the literature search and data extraction independently.
 - Redact the study outcomes from abstract, text, etc.
 - Mask author names, affiliations, journal name, etc.
 - Pre-define the inclusion and exclusion criteria
 - E.g. Randomized control trial

Funnel Plot

- A descriptive approach for evaluating if selection bias is present (Sterne and Harbord, 2004).
- X-axis: treatment effect Y-axis: precision of effect size estimate
- Statistical test (Egger et al. 1997; Harbord 2005; Begg & Mazumdar, 1994).

Funnel Plots (PCT test)

Heterogeneity Across Studies

- Heterogeneity is inevitable in a meta-analysis (Higgins 2003).
- Clinical heterogeneity
 - Study populations (enrollment criteria), endpoints, length of follow-up, treatment arm, control arm, available data, device used in studies, etc.
- Statistical heterogeneity
 - exists when the true effects being evaluated differ between studies.
- Cochran's χ^2 or Q (Higgins and Thompson 2002; 2003)

Forest Plot of OR: Antibiotic Initiation, LRTI

Figure 7: Antibiotic initiation (fixed effects model)

Different Devices for PCT Measurement

- LRTI (study level)
 - 2 out of 11 studies used <u>VIDAS BRAHMS PCT</u>
 - 9 out of 11 studies used BRAHMS PCT sensitive Kryptor
- Sepsis (study level)
 - 1 out of 10 studies used <u>VIDAS BRAHMS PCT</u>
 - 2 out of 10 studies used VIDAS BRAHMS PCT as one of multiple assays
 - 5 out of 10 studies used BRAHMS PCT sensitive Kryptor
 - 2 out of 10 studies used BRAHMS PCT LIA

Different Cutoffs in Guidance Algorithms

Algorithm (Device):

LRTIStronglyDiscouragedEncouragedStronglyAB initiationdiscouraged--encouraged<0.10</td>0.10-0.250.26-0.50>0.50

LRTI AB cessation: PCT \leq 0.25 ng/mL or decrease > 80%

Sepsis AB cessation: PCT \leq 0.5 ng/mL or decrease > 80%

Different Follow-up Times and Rates

- Follow-up time is different across studies: ranges from 5 days, 1 month to 6 months.
- Follow-up rate varied across studies:
 - LRTI: range was 83% to 99% with 1 study unreported
 - Sepsis: range was 67% to 99% with 4 studies unreported

Summary Level analysis (Aggregation Bias)

- Meta-regression using summary level data (aggregate data) can be subject to aggregation bias (ecological fallacy, Berlin et al., 2002).
- The phenomenon that a relationship across studies does not reflect the relationships within studies (Harbord & Higgins, 2008; Higgins, Thompson, Deeks, & Altman, 2002)

Aggregation Bias

20

Patient Level Analysis

- Individual patient-level data (IPD)
 - Whether patient characteristics are related to treatment/outcome
 - Controlling for the covariate effects (confounding risk factors, baseline characteristics)
- IPD is considered as a gold standard approach
- But NOT a solution

Verification of Meta-analysis

- Compare IPD analysis to the summary-level analysis if possible (Fortin et al, 1995; Olkin and Sampson, 1998)
- Predict the results for the Nth study from a metaanalysis of the first N – 1 studies (Simon, 1999; Pennello and Thompson, *J Biopharmaceutical Statistics*, 2008)

Summary

- An opportunity to combine and integrate comparable studies of the device identified through systematic review.
- Many challenges to be overcome for a metaanalysis result to be interpretable and generalizable.

Acknowledgement

Dr. Gene Pennello, FDA/CDRH

References

- Sterne, J.A.C. and Harbord, R.M (2004). Funnel plots in meta-analysis, *Stata J.*, Volume 4, Issue 2: 127-141.
- Begg, C. B. and Mazumdar, M. (1994). Operating Characteristics of a Rank Correlation Test for Publication Bias, *Biometrics*, 50, 1088-1101.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ. 2003 Sep 6;327(7414):557-60.
- Lambert, P.C., Sutton, A.J., Abrams, K.R. and Jones, D.R. (2002). A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. *Journal of Clinical Epidemiology*, Volume 55, Issue 1: 86 94.
- Higgins JPT, Thompson SG (2004). Controlling the risk of spurious results from meta-regression. *Statistics in Medicine*, 23: 1663-1682.
- Pocock, Assman, Enos, Kasten. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems *Statist*. *Med*. 2002; 21:2917–2930 (DOI: 10.1002/sim.1296).

References (cont.)

- Senn SJ. Covariate imbalance and random allocation in clinical trials. *Statist. Med.* 1989; 8:467–475.
- Permutt, T. (2007). A note on stratification in clinical trials. *Drug Information Journal* 41:719–722.
- Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, Anti-lymphocyte antibody induction therapy study group. 2002. Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Statistics in Medicine 21: 371–387. DOI: 10.1002/sim.1023
- Permutt, T. (2007). A note on stratification in clinical trials. *Drug Information Journal* 41:719–722.
- Simon, R. (1999) Bayesian Design and Analysis of Active Control Clinical Trials. *Biometrics*, Vol. 55, No. 2, pp. 484-487.
- Pennello, G. and Thompson, L. (2008) Experience with Reviewing Bayesian Medical Device Trials. *Journal of Biopharmaceutical Statistics*. 18:1, 81 115.

References (cont.)

- Senn SJ. Covariate imbalance and random allocation in clinical trials. *Statist. Med.* 1989; 8:467–475.
- Permutt, T. (2007). A note on stratification in clinical trials. *Drug Information Journal* 41:719–722.
- Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI, Anti-lymphocyte antibody induction therapy study group. 2002. Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Statistics in Medicine 21: 371–387. DOI: 10.1002/sim.1023
- Permutt, T. (2007). A note on stratification in clinical trials. *Drug Information Journal* 41:719–722.
- FDA guidance: Design Considerations for Pivotal Clinical Investigations for Medical Devices.
 <u>https://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocume</u> <u>nts/ucm373750.htm</u>
- FDA Draft guidance: Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices. <u>https://www.fda.gov/ucm/groups/fdagovpublic/@fdagov-meddev-gen/documents/document/ucm513027.pdf</u>