USE OF ACCELEROMETER DATA TO EVALUATE PHYSICAL ACTIVITY AS A SURROGATE ENDPOINT IN HEART FAILURE CLINICAL TRIALS

> Tracy Bergemann PhD Senior Principal Statistician

ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop September 27, 2017

BACKGROUND

- Patient activity levels are of increasing clinical interest to heart failure specialists
- Recent technology developments allow for easy collection of activity data from accelerometers in watches, phones, etc.
- As heart failure treatment has improved over time, clinical trials that use mortality as a primary endpoint are no longer pragmatically or financially feasible

GOALS

- 1. Can accelerometer data from implantable devices be summarized as a meaningful derived clinical variable?
- 2. Is this derived variable correlated with standard HF clinical outcomes?
- 3. Can the derived variable be used as a surrogate endpoint in HF clinical trials?

GOAL #1

Can accelerometer data from implantable devices be summarized as a meaningful derived clinical variable?

ACCELEROMETER DATA IN IMPLANTABLE DEVICES

Activity is measured by accelerometer in a pacemaker or insertable cardiac monitor. In a given minute, implantable devices use a single-axis accelerometer to convert raw units to a counter. If the counter is above a fixed predetermined threshold, the minute is called "active".

The derived activity variable is the average activity in a month = $\sum_{i=1}^{30} \sum_{j=1}^{1440} x_{ij}/30$ where $x_{ij} = I$ (active minute).

Rate response programming impacts the counter resulting in differing activity levels

Accelerometer Signal: Threshold

MEASURING CHANGES IN ACTIVITY

GOAL #2

Is this derived variable correlated with standard HF clinical outcomes?

PATIENT DATA

Patients: 2249 patients from the RAFT and REVERSE randomized studies of CRT (cardiac resynchronization therapy) Age: 65±10 years , 82% men, LVEF: 23±6%, NYHA I 4%, NYHA II 81%, NYHA III 15%

Follow-up: 35 ± 20 months

HF outcomes: Combination HFH/mortality, mortality, and NYHA class at 12 months

During the follow up 404 pts died and 445 pts had HF hospitalization

CORRELATION OF **BASELINE PA** WITH LONG TERM HF OUTCOMES?

Analysis adjusted for		Death or HF	Death	Improvement in NYHA
baseline variables		hospitalization		class at 12 months
Activity variable	Ν	HR (95% CI); P-value	HR (95% CI); P-value	OR (95% CI); P-value
One month PA	2042	0.96 (0.94–0.97); P<0.0001	0.94 (0.92–0.95); P<0.0001	1.02 (1.01-1.04); P=0.004

CORRELATION OF INCREASE IN PA 1-6 MONTHS WITH LONG TERM HF OUTCOMES?

Adjusted for baseline varial	oles	Death or HF	Death	Improvement in NYHA
		hospitalization		class at 12 months
Activity variable	Ν	HR (95% CI); P-value	HR (95% CI); P-value	OR (95% CI); P-value
ΔPA from 1 to 6 months	1963	0.99 (0.97–1.01); P=0.47	0.97 (0.94–1.00); P=0.04	1.03 (1.00-1.06); P=0.03

OTHER REFERENCES

- Conraads VM et al, Physical Activity Measured With Implanted Devices Predicts Patient Outcome in Chronic Heart Failure, *Circulation: HF*, 2014.
- Snipelisky D et al, Accelerometer-Measured Daily Activity in Heart Failure with Preserved Ejection Fraction, *Circulation: HF*, 2017.
- Jamé S et al, Predictive value of device-derived activity level for short-term outcomes in MADIT-CRT, *Heart Rhythm*, 2017

GOAL #3

Can the derived variable be used as a surrogate endpoint in HF clinical trials?

CRITERIA FOR A SURROGATE ENDPOINT

Does the primary endpoint Y differ by randomization group X?
Is the surrogate endpoint Z associated with the primary endpoint Y?
Does the surrogate endpoint Z differ by randomization group X?

Prentice criterion: $f(Y|Z) \perp X$

ACTIVITY LEVELS BY RANDOMIZATION

CRITERIA FOR A SURROGATE ENDPOINT

Does the primary endpoint Y differ by randomization group X?
Is the surrogate endpoint Z associated with the primary endpoint Y?
Does the surrogate endpoint Z differ by randomization group X?

CONCLUSIONS

• Goal #1 met. We can derive meaningful clinical variables from accelerometers in implantable devices

• Goal #2 met. The derived variables are associated with standard clinical outcomes in heart failure.

• Goal #3 not met. Further investigations underway.

THANK YOU

• Any questions?

BACK UP SLIDES

SUBGROUP ANALYSIS: RATE RESPONSE PROGRAMMING

RAFT/REVERSE With rate response programming throughout

CHANGE IN PA FROM 1 MONTH TO 6 MONTHS

	CRT OFF (N=1059)	CRT ON (N=1279)
1 month PA	202 ± 107	207 ± 100
(Mean± SD)	min/day	min/day
6 month PA	213 ± 112	218 ± 105
(Mean± SD)	min/day	min/day
Change from 1 to 6	1.0 ± 5.9	1.1 ± 5.8
months (Mean ± SD)	min/day	min/day
Percent with an increase in activity	55%	55%
Percent with a decrease in activity	45%	45%