Impact of proposed study development framework on clinical trial practice

Craig Mallinckrodt 2017 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop

Outline

- A brief look at current trends / issues in each of the study development steps
 - Objectives driven by decisions
 - Estimands
 - Design
 - Analysis
 - Sensitivity

Different Decisions & Perspectives

Stakeholders	Types of Clinical Trials
 Regulators 	 Exploratory vs. confirmatory vs.
 Payers 	post-approval
 Physicians 	 Short-term vs. long-term treatment
 Patients 	 Symptomatic treatment vs. disease
 Sponsors 	modification
	 Efficacy vs. safety
	 In-patient vs out-patient

General Categories of Objectives

- Compare treatment A vs treatment B
- Compare treatment policy A vs policy B
 - Begin with treatment A vs begin with treatment B
 - Treatment A + rescue vs Treatment B + rescue

Current ICH E9 Recommends ITT

"The principle that asserts that the effect of a treatment policy can be best assessed by evaluating on the basis of the intention to treat a subject rather than the actual treatment given.

It has the consequence that subjects allocated to a treatment group should be followed up, assessed and analysed as members of that group irrespective of their compliance to the planned course of treatment."

Intention to Treat

- Primary focus of ITT in ICH E9 was on which patients to include, not as a means of dealing with missing data
 - Including post-rescue data does reduce the number of missing values
- ICH E10 states that need for rescue is an endpoint
- Today's more nuanced discussion of estimands compelled an update to E9
- That is a sign of significant progress!!!

Rescue Medication Considerations

- Post-rescue data in an ITT analysis can mask or exaggerate effect of originally assigned med
 - Post rescue data not included for treatment objectives
 - When data after rescue are included inference is on treatment policy / regimen
- Availability of rescue should not influence adherence to initial treatments - but this is a concern in placebo controlled / blinded trials
 - On blinded med X% chance on placebo
 - On rescue med 0% chance on placebo

Mallinckrodt et al. Pharmaceutical statistics

General Trends

Objectives

- ITT should not be followed blindly, but deviations should not be taken lightly
- Pre-approval
 - Symptomatic endpoints: treatment
 objectives often more relevant
 - Hard endpoints: treatment policy more prevalent – ethical need for rescue
- Post-approval, policy objectives increase in relevance

Outline

- Objectives
- Estimands
- Design
- Analysis
- Sensitivity

General Categories of Estimands

- Efficacy
 - Benefit of the drug when taken as directed
- Effectiveness
 - Benefit of the drug as actually taken
 - Conceptually, a composite of efficacy and adherence
- More general categorization (safety outcomes)
 - De-jure: When taken as directed
 - De-facto: As actually taken

Fundamental Considerations

- De-jure estimands
 - What to expect if patient hadn't stopped / switched
 - Counterfactual for group; assess as if all patients adhere when in fact some do not
 - Valid estimate of what to expect if patients adhere – the majority
 - In order to give proper directions, must assess what happens if taken as directed
 - Regulators generally do not accept as primary

Fundamental Considerations

- De-facto estimands
 - Counterfactual for individual patients
 - Mixture of adherent and non-adherent each patient is one OR the other, not a mix
 - Valid estimate of what to expect for the group
- Strengths and limitations for each category

General Trends

Estimands

- Diverse stake holders. Often Important to assess multiple estimands in a trial
- Greater focus on de-jure early (Ph2), shifting to de-facto later (ph3)
- Those making decisions about groups favor de-facto, those making decisions about individuals favor de-jure
- Discussing estimands can be cumbersome, we risk over-complicating things

Outline

- Objectives
- Estimands
- Design
- Analysis
- Sensitivity

Design Considerations

- For de-jure estimands, maximizing adherence
 - Improves sensitivity reduces probability plausible departures from MAR overturn result
 - Does not influence parameter values
- For de-facto estimands, maximizing adherence
 - Influences parameter values
 - With NRI, If dropout reduced by design, fewer fail & treatment is more effective
 - If means to maximize adherence in trial are not feasible in practice, generalizability of results may suffer

Design considerations

- Missing data can be minimized via design and / or conduct
- NRC guidance provided designs to minimize missing data, often entail trade-offs (e.g., patient population)
- Altering trial conduct to minimize missing data - especially loss to follow up – may involve fewer trade-offs

General Trends

- Design
 - Minimizing loss to follow up and capturing detailed reasons for discontinuation are key
 - Pragmatic / real world estimands best evaluated from pragmatic real world designs where adherence decisions are generalizable to clinical practice
 - Placebo and blinding

Outline

- Objectives
- Estimands
- Design
- Analysis
- Sensitivity

Common Analyses – dealing with intercurrent events

- 1) Treatment policy So-called ITT
- 2) Composite modified definition of the variable (or the summary measure) with intercurrent event(s) a component of the outcome
- 3) Hypothetical specific hypothetical conditions of interest; e.g.,
 - Outcome if no inter-current events
 - Outcome if patients could be followed without treatment after discontinuation of randomized treatment

Other Analyses of Interest

- Principal strata restrict population of interest to the stratum of patients in which an intercurrent event would not have happened.
- While on treatment values of the variable up to the time of the inter-current event

Considerations for Composite Analyses

- Unifying principle: if patients don't adhere they don't benefit
- Implicitly assumes adherence decisions approximate clinical practice
- Key is how to quantify "no benefit"
- Dropout = failure: NRI, mNRI, BOCF
 - No missing data
 - Assumes no spontaneous improvement
- Controlled imputation approaches
 - Use placebo as definition for no benefit

General Trends

- Analyses
 - For composite endpoints,
 - mNRI and controlled imputation approaches gaining popularity
 - Handle different reasons for dropout differently
 - Bad outcome for LOE, AE, L/fu
 - MAR for administrative reasons
 - If dropout is informative, it may convey different information depending on the reasons for dropout

Outline

- Objectives
- Estimands
- Design
- Analysis
- Sensitivity

General Approaches for Assessing Sensitivity to Departures From MAR

- Compare results from multiple (MNAR) models
 - Inferences difficult because results may differ because both models wrong, 1 wrong, chance differences (Statist Med. DOI: 10.1002/sim.6753
- Add a sensitivity component or parameter(s) to the primary analysis Ther Innov & Reg Sci 48(1): 68-80.
 - Vary sensitivity (MNAR) parameter(s) within the primary analysis model
 - Tipping point and plausible worst case approaches

"Controlled Imputation" Family

- MI and likelihood-based approaches
- General idea is to use knowledge from dropout to create relevant departures from MAR
 - Reference based Plausible worst case
 - Jump to reference, copy reference, copy increment from reference J Bio pharm Stat 23:1352-1371
 - Delta adjustment Tipping point or plausible worst case Clinical Trials with Missing Data. (2014). Wiley, Chichester
 - Conditional (sequential)
 - Marginal

Delta Adjustment Methods

- Conditional (sequential, visit-by-visit)
 - Subtract a constant (delta) from visit X imputed value that then further influences imputed values at visit > X
 - First missing visit only (diminishing effect)
 - All missing visits (accumulating effect)
- Marginal
 - Complete all imputations then add delta (constant effect)

Delta Adjustment Frameworks

- Plausible worst case
 - Choose a meaningful delta (e.g., average treatment effect)
 - If results significant after delta adjustment, conclude results are robust
- Tipping point
 - Progressively increase delta until primary analysis is overturned
 - If value required to overturn significance is not plausible results are robust

General Trends

Sensitivity

- Key is to assess departures from assumptions – typically MAR
- Delta adjustment and reference-based imputation are useful sensitivity analyses
- Incorporate sensitivity into sample size determination

Summary

- The study development framework is
 - useful
 - influencing practice
- We have made a lot of progress!!!