Web Tools for Agreement Statistics

Presentation at FDA/Industry Workshop Sept. 27, 2017

> Lawrence I-Kuei Lin, Ph.D JBS Consulting Services Inc. University of Illinois at Chicago

Please see the book for detailed information

Lawrence Lin A. S. Hedayat Wenting Wu

Statistical Tools for Measuring Agreement

Agreement Statistics

- Coverage probability (CP): captures the proportion of paired observations that fall into the allowable deviation based on absolute differences or proportional changes
- Total deviation index (TDI): quantile of the allowable coverage probability based on absolute differences or proportional changes.
- Precision coefficient: Pearson correlation coefficient

Agreement Statistics

- Accuracy coefficient: measures the closeness of means as well as variances between the paired observations
- Concordance correlation coefficient (CCC): product of accuracy and precision coefficients measuring the closeness of observations from the identity or concordance line
- The above cover from the basic model (k=2, m=1) to unified model (k≥2, m≥1)

Comparative Agreement Statistics: TIR

- The TIR is a non-inferiority assessment such that the mean squared differences (MSD) of individual readings from different raters can not be inferior by a certain margin to the MSD of the replicated readings within raters
- For a TIR example, to assess the individual bioequivalence, the MSD of test and reference compound is assessed relative to the MSD of within reference compound

Comparative Agreement Statistics: IIR

- The IIR is a classical assessment such that the intra-MSD of selected assays/raters can be better, equal, or worse than that of other assays/raters
- For an IIR example, in the medical device environment, we often want to know if the within device MSD of a newly developed device is better, equal, or worse than that of the gold standard device

Continuous Data Example: Basic model, Constant Error

- Calcium (mg/dL) of test and reference instruments were paired measured from 60 samples
- Precise but inaccurate
- CLIA 1171 wants 95% coverage probability (CP) of absolute paired differences or % changes within ATE
- PTC=1 mg/dL was used as ATE
- CLIA also wants the 95% lower limit of CP being >0.92

Continuous Data Example: Automatic Blood Pressure Meter, Proportional Error

- This example is obtained from Table 1 of Bland and Altman (1999)
- Systolic blood pressure data from a study in which simultaneous triplicate measurements were made by each of two experienced nurses (denoted by J and R) using a sphygmomanometer (gold standard) and by a semi-automatic blood pressure monitor (denoted by S)

Example: Automatic Blood Pressure Meter

This data set has k = 3 and m = 3. Readings by J and R were almost identical. For unified agreement, we analyzed this data set between J and S, or k = 2 and m = 3. For comparative agreement, we compare J & R to S.

J2, J3 vs J1 (
$$o = J2$$
, $\Box = J3$)

S2, S3 vs S1 (
$$o = S2$$
, $\Box = S3$)

Between S1 and J1 (Reflecting Total Agreement)

Between S and J Averages (Reflecting Inter Agreement)

Web Tools

- Free to use (limited to 25hrs/month of usage)
- Built using Shiny's shinyapps.io based on R
- Four web tools:
 - Basic agreement stats for constant error case (absolute difference) with agreement plot for continuous data: <u>https://agreement-by-lin.shinyapps.io/Agreement_C/</u>
 - Basic agreement stats for proportional error case (% change) with agreement plot for continuous data: <u>https://agreement-by-lin.shinyapps.io/Agreement_P/</u>
 - Unified agreement stats for continuous and categorical data: <u>https://agreement-by-lin.shinyapps.io/Unified_Agreement/</u>
 - TIR and IIR: https://agreement-by-lin.shinyapps.io/TIR_IIR/
- Contact Info: <u>equeilin@gmail.com</u>, 760-814-8891